15:00

### K-theoretic classification of inductive limit actions of fusion categories on AF-algebras

## Abstract

I will introduce a K-theoretic complete invariant of inductive limits of finite dimensional actions of fusion categories on unital AF-algebras. This framework encompasses all such actions by finite groups on AF-algebras. Our classification result essentially follows from applying Elliott's Intertwining Argument adapted to this equivariant context, combined with tensor categorical techniques.

Our invariant roughly consists of a finite list of pre-ordered abelian groups and positive homomorphisms, which can be computed in principle. Under certain conditions this can be done in full detail. For example, using our classification theorem, we can show torsion-free fusion categories admit a unique AF-action on certain AF-algebras.

Connecting with subfactors, inspired by Popa’s classification of finite-depth hyperfinite subfactors by their standard invariant, we study unital inclusions of AF-algebras with trivial centers, as natural analogues of hyperfinite II_1 subfactors. We introduce the notion of strongly AF-inclusions and an Extended Standard Invariant, which characterizes them up to equivalence.