Tue, 04 Feb 2020
14:15
L4

Tensor-triangular fields

Paul Balmer
(UCLA)
Abstract

I'll give a general introduction to tensor-triangular geometry, the algebraic study of tensor-triangulated categories as they appear in topology, geometry and representation theory. Then I'll discuss an elementary idea, that of a "field" in this theory, and explain what we currently know about them.

Wed, 06 Apr 2016

17:00 - 18:00
L1

Andrea Bertozzi - The Mathematics of Crime

Andrea Bertozzi
(UCLA)
Abstract
In the USA, law enforcement agencies have discovered that partnering with a team of mathematicians and social scientists from UCLA can help them determine where crime is likely to occur and so enable them to stop it before it happens.
 
In this lecture Andrea Bertozzi will tell the story behind her role on the UCLA team that developed a 'predictive policing' computer programme that zeros-in on areas that have the highest probability of crime. She will also discuss how mathematics play an increasing role in studying crime, especially gang crime. 

 

To book please email @email

Mon, 11 May 2015
15:45
L6

The Triangulation Conjecture

Ciprian Manolescu
(UCLA)
Abstract

The triangulation conjecture stated that any n-dimensional topological manifold is homeomorphic to a simplicial complex. It is true in dimensions at most 3, but false in dimension 4 by the work of Casson and Freedman. In this talk I will explain the proof that the conjecture is also false in higher dimensions. This result is based on previous work of Galewski-Stern and Matumoto, who reduced the problem to a question in low dimensions (the existence of elements of order 2 and Rokhlin invariant one in the 3-dimensional homology cobordism group). The low-dimensional question can be answered in the negative using a variant of Floer homology, Pin(2)-equivariant Seiberg-Witten Floer homology. At the end I will also discuss a related version of Heegaard Floer homology, which is more computable.

Fri, 25 Oct 2013

14:15 - 15:15
C6

Order in Chaos: The Emergence of Pattern in Random Processes

William Newman
(UCLA)
Abstract

Many years ago, Mark Kac was consulted by biologist colleague Lamont Cole regarding field-based observations of animal populations that suggested the existence of 3-4 year cycles in going from peak to peak. Kac provided an elegant argument for how purely random sequences of numbers could yield a mean value of 3 years, thereby establishing the notion that pattern can seemingly emerge in random processes. (This does not, however, mean that there could be a largely deterministic cause of such population cycles.)

By extending Kac's argument, we show how the distribution of cycle length can be analytically established using methods derived from random graph theory, etc. We will examine how such distributions emerge in other natural settings, including large earthquakes as well as colored Brownian noise and other random models and, for amusement, the Standard & Poor's 500 index for percent daily change from 1928 to the present.

We then show how this random model could be relevant to a variety of spatially-dependent problems and the emergence of clusters, as well as to memory and the aphorism "bad news comes in threes." The derivation here is remarkably similar to the former and yields some intriguing closed-form results. Importantly, the centroids or "centers of mass" of these clusters also yields clusters and a hierarchy then emerges. Certain "universal" scalings appear to emerge and scaling factors reminiscent of Feigenbaum numbers. Finally, as one moves from one dimension to 2, 3, and 4 dimensions, the scaling behaviors undergo modest change leaving this scaling phenomena qualitatively intact.

Finally, we will show how that an adaptation of the Langevin equation from statistical physics provides not simply a null-hypothesis for matching the observation of 3-4 year cycles, but a remarkably simple model description for the behavior of animal populations.

Thu, 13 Mar 2014

16:00 - 17:00
L3

"Myco-fluidics": physical modeling of fungal growth and dispersal

Marcus Roper
(UCLA)
Abstract

Familiar species; humans, mammals, fish, reptiles and plants represent only a razor’s edge of the Earth’s immense biodiversity. Most of the Earth’s multicellular species lie buried in soil, inside of plants, and in the undergrowth, and include millions of unknown species, almost half of which are thought to be fungi. Part of the amazing success of fungi may be the elegant solutions that they have evolved to the problems of dispersing, growing and adapting to changing environments. I will describe how we using both math modeling and experiments to discover some of these solutions. I will focus on (i) how cytoplasmic mixing enables some species to tolerate internal genetic diversity, making them better pathogens and more adaptable, and (ii) how self-organization of these flows into phases of transport and stasis enables cells to function both as transport conduits, and to perform other functions like growth and secretion.

Tue, 08 May 2012

14:30 - 15:30
L3

Extremal Problems in Eulerian Digraphs

Hao Huang
(UCLA)
Abstract

Graphs and digraphs behave quite differently, and many classical results for graphs are often trivially false when extended to general digraphs. Therefore it is usually necessary to restrict to a smaller family of digraphs to obtain meaningful results. One such very natural family is Eulerian digraphs, in which the in-degree equals out-degree at every vertex.

In this talk, we discuss several natural parameters for Eulerian digraphs and study their connections. In particular, we show that for any Eulerian digraph G with n vertices and m arcs, the minimum feedback arc set (the smallest set of arcs whose removal makes G acyclic) has size at least $m^2/2n^2+m/2n$, and this bound is tight. Using this result, we show how to find subgraphs of high minimum degrees, and also long cycles in Eulerian digraphs. These results were motivated by a conjecture of Bollob\'as and Scott.

Joint work with Ma, Shapira, Sudakov and Yuster

Tue, 24 Apr 2012

14:30 - 15:30
L3

Large and judicious bisections of graphs

Choongbum Lee
(UCLA)
Abstract

It is very well known that every graph on $n$ vertices and $m$ edges admits a bipartition of size at least $m/2$. This bound can be improved to $m/2 + (n-1)/4$ for connected graphs, and $m/2 + n/6$ for graphs without isolated vertices, as proved by Edwards, and Erd\"os, Gy\'arf\'as, and Kohayakawa, respectively. A bisection of a graph is a bipartition in which the size of the two parts differ by at most 1. We prove that graphs with maximum degree $o(n)$ in fact admit a bisection which asymptotically achieves the above bounds.These results follow from a more general theorem, which can also be used to answer several questions and conjectures of Bollob\'as and Scott on judicious bisections of graphs.
Joint work with Po-Shen Loh and Benny Sudakov

Fri, 24 Jan 2003

14:00 - 15:00
Comlab

Geometry, PDEs fluid dynamics, and image processing

Prof Tony Chan
(UCLA)
Abstract

Image processing is an area with many important applications, as well as challenging problems for mathematicians. In particular, Fourier/wavelets analysis and stochastic/statistical methods have had major impact in this area. Recently, there has been increased interest in a new and complementary approach, using partial differential equations (PDEs) and differential-geometric models. It offers a more systematic treatment of geometric features of mages, such as shapes, contours and curvatures, etc., as well as allowing the wealth of techniques developed for PDEs and Computational Fluid Dynamics (CFD) to be brought to bear on image processing tasks.

I'll use two examples from my recent work to illustrate this synergy:

1. A unified image restoration model using Total Variation (TV) which can be used to model denoising, deblurring, as well as image inpainting (e.g. restoring old scratched photos). The TV idea can be traced to shock capturing methods in CFD and was first used in image processing by Rudin, Osher and Fatemi.

2. An "active contour" model which uses a variational level set method for object detection in scalar and vector-valued images. It can detect objects not necessarily defined by sharp edges, as well as objects undetectable in each channel of a vector-valued image or in the combined intensity. The contour can go through topological changes, and the model is robust to noise. The level set method was originally developed by Osher and Sethian for tracking interfaces in CFD.

(The above are joint works with Jackie Shen at the Univ. of Minnesota and Luminita Vese in the Math Dept at UCLA.)

Subscribe to UCLA