Thu, 27 Apr 2023
17:00
L4

Extremal models in affine logic

Tomás Ibarlucía
(Université Paris Diderot)
Abstract

Affine logic is the fragment of continuous logic in which the connectives are limited to affine functions. I will discuss the basics of this logic, first studied by Bagheri, and present the results of a recent joint work with I. Ben Yaacov and T. Tsankov in which we initiate the study of extreme types and extremal models in affine logic.

In particular, I will discuss an extremal decomposition result for models of simplicial affine theories, which generalizes the ergodic decomposition theorem.

Fri, 16 Jun 2017

14:00 - 15:00
C2

Cooperating around a theory: the example of lattice theory in the 1930s

Simon Decaens
(Université Paris Diderot)
Abstract

In 1933, lattice theory was a new subject, put forth by Garrett Birkhoff. In contrast, in 1940, it was already a mature subject, worth publishing a book on. Indeed, the first monograph, written by the same G. Birkhoff, was the result of these 7 years of working on a lattice theory. In my talk, I would like to focus on this fast development. I will present the notion of a theory not only as an actors' category but as an historical category. Relying on that definition, I would like to focus on some collaborations around the notion of lattices. In particular, we will study lattice theory as a meeting point between the works of G. Birkhoff and two other mathematicians: John von Neumann and Marshall Stone.

Mon, 14 Nov 2016

14:15 - 15:15
L3

Tail index estimation, concentration, adaptation...

STEPHANE BOUCHERON
(Université Paris Diderot)
Abstract

This paper presents an adaptive version of the Hill estimator based on Lespki’s model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand’s concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata’s representation of slowly varying functions, and Rényi’s characterisation for the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations.

http://projecteuclid.org/euclid.ejs/1450456321  (joint work with Maud Thomas)

Mon, 16 Feb 2015

17:00 - 18:00
L5

The random paraxial wave equation and application to correlation-based imaging

Josselin Garnier
(Université Paris Diderot)
Abstract

We analyze wave propagation in random media in the so-called paraxial regime, which is a special high-frequency regime in which the wave propagates along a privileged axis. We show by multiscale analysis how to reduce the problem to the Ito-Schrodinger stochastic partial differential equation. We also show how to close and solve the moment equations for the random wave field. Based on these results we propose to use correlation-based methods for imaging in complex media and consider two examples: virtual source imaging in seismology and ghost imaging in optics.

Mon, 03 Jun 2013

15:45 - 16:45
Oxford-Man Institute

Bayesian nonparametric estimation using the heat kernel

DOMINIQUE PICARD
(Université Paris Diderot)
Abstract

Convergence of the Bayes posterior measure is considered in canonical statistical settings (like density estimation or nonparametric regression) where observations sit on a geometrical object such as a compact manifold, or more generally on a compact metric space verifying some conditions.

A natural geometric prior based on randomly rescaled solutions of the heat equation is considered. Upper and lower bound posterior contraction rates are derived.

Subscribe to Université Paris Diderot