Thu, 27 Nov 2008

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Topology Optimisation: Achievements and Challenges

Dr. Alicia Kim
(University of Bath)
Abstract

As research in topology optimisation has reached a level of maturity, two main classes of methods have emerged and their applications to real engineering design in industry are increasing. It has therefore become important to identify the limitations and challenges in order to ensure that topology optimisation is appropriately employed during the design process whilst research may continue to offer a more reliable and fast design tool to engineers.

The seminar will begin by introducing the topology optimisation problem and the two popular finite element based approaches. A range of numerical methods used in the typical implementations will be outlined. This will form the basis for the discussion on the short-comings and challenges as an easy-to-use design tool for engineers, particularly in the context of reliably providing the consistent optimum solutions to given problems with minimum a priori information. Another industrial requirement is a fast solution time to easy-to-set-up problems. The seminar will present the recent efforts in addressing some of these issues and the remaining challenges for the future.

Mon, 21 Apr 2008
17:00
L3

Multi-phase mixtures, multi-well relaxation and $H$-measures

V.P. Smyshlyaev
(University of Bath)
Abstract
Multi-well relaxation problem emerges e.g. in characterising effective properties of composites and in phase transformations. This is a nonlinear problem and one approach uses its reformulation in Fourier space, known in the theory of composites as Hashin-Shtrikman approach, adapted to nonlinear composites by Talbot and Willis. Characterisation of admissible mixtures, subjected to appropriate differential constraints, leads to a quasiconvexification problem. The latter is equivalently reformulated in the Fourier space as minimisation with respect to (extremal points of) H-measures of characteristic functions (Kohn), which in a sense separates the microgeometry of mixing from the differential constraints. For three-phase mixtures in 3D we obtain a full characterisation of certain extremal H-measures. This employs Muller's Haar wavelet expansion estimates in terms of Riesz transform to establish via the tools of harmonic analysis weak lower semicontinuity of certain functionals with rank-2 convex integrands. As a by-product, this allows to fully solve the problem of characterisation of quasiconvex hulls for three arbitrary divergence-free wells. We discuss the applicability of the results to problems with other kinematic constraints, and other generalisations. Joint work with Mariapia Palombaro, Leipzig.
Tue, 06 May 2008

15:45 - 16:45
L3

Exceptional curves on del Pezzo surfaces

Alastair King
(University of Bath)
Abstract

I plan to discuss some aspects the mysterious relationship between the symmetries of toroidal compactifications of M-theory and helices on del Pezzo surfaces.

Mon, 30 Apr 2007
14:15
DH 3rd floor SR

Parabolic Anderson model: Localisation of mass in random media

Dr Nadia Sidorova
(University of Bath)
Abstract

 

We study the parabolic Anderson problem, i.e., the heat equation on the d-dimentional

integer lattice with independent identically distributed random potential and

localised initial condition. Our interest is in the long-term behaviour of the

random total mass of the unique non-negative solution, and we prove the complete

localisation of mass for potentials with polynomial tails.

 

Thu, 08 Jun 2006
16:30
DH 1st floor SR

A teleparallel reformulation of Dirac's equation or quantum electrodynamics for dummies

Dimitri Vassiliev
(University of Bath)
Abstract
The price we pay for this simplicity is that the change of variable
spinor --> coframe
makes the Dirac equation nonlinear. The morale of the talk is that, in our opinion, it is more natural to view the Dirac equation as a nonlinear equation for the unknown coframe rather than a linear equation for the unknown spinor.
Subscribe to University of Bath