Fri, 17 May 2024

12:00 - 13:00
Quillen Room

TBD

Matthew Chaffe
(University of Birmingham)
Abstract

TBD

Tue, 30 May 2023

14:00 - 15:00
L5

Cycle Partition of Dense Regular Digraphs and Oriented Graphs

Allan Lo
(University of Birmingham)
Abstract

Magnant and Martin conjectured that every $d$-regular graph on $n$ vertices can be covered by $n/(d+1)$ vertex-disjoint paths. Gruslys and Letzter verified this conjecture in the dense case, even for cycles rather than paths. We prove the analogous result for directed graphs and oriented graphs, that is, for all $\alpha>0$, there exists $n_0=n_0(\alpha)$ such that every $d$-regular digraph on $n$ vertices with $d \ge \alpha n $ can be covered by at most $n/(d+1)$ vertex-disjoint cycles. Moreover if $G$ is an oriented graph, then $n/(2d+1)$ cycles suffice. This also establishes Jackson's long standing conjecture for large $n$ that every $d$-regular oriented graph on $n$ vertices with $n\leq 4d+1$ is Hamiltonian.
This is joint work with Viresh Patel and  Mehmet Akif Yıldız.

Tue, 16 May 2023
15:30
L2

Topological recursion, exact WKB analysis, and the (uncoupled) BPS Riemann-Hilbert problem

Omar Kidwai
(University of Birmingham)
Abstract
The notion of BPS structure describes the output of the Donaldson-Thomas theory of CY3 triangulated categories, as well as certain four-dimensional N=2 QFTs. Bridgeland formulated a certain Riemann-Hilbert-like problem associated to such a structure, seeking functions in the ℏ plane with given asymptotics whose jumping is controlled by the BPS (or DT) invariants. These appear in the description of natural complex hyperkahler metrics ("Joyce structures") on the tangent bundle of the stability space,and physically correspond to the "conformal limit". 
 
Starting from the datum of a quadratic differential on a Riemann surface X, I'll briefly recall how to associate a BPS structure to it, and explain, in the simplest examples, how to produce a solution to the corresponding Riemann-Hilbert problem using a procedure called topological recursion, together with exact WKB analysis of the resulting "quantum curve". Based on joint work with K. Iwaki.
Tue, 24 Jan 2023
14:00
L6

Highest weight theory and wall-crossing functors for reduced enveloping algebras

Matthew Westaway
(University of Birmingham)
Abstract

In the last few years, major advances have been made in our understanding of the representation theory of reductive algebraic groups over algebraically closed fields of positive characteristic. Four key tools which are central to this progress are highest weight theory, reduction to the principal block, wall-crossing functors, and tilting modules. When considering instead the representation theory of the Lie algebras of these algebraic groups, more subtleties arise. If we look at those modules whose p-character is in so-called standard Levi form we are able to recover the four tools mentioned above, but they have been less well-studied in this setting. In this talk, we will explore the similarities and differences which arise when employing these tools for the Lie algebras rather than the algebraic groups. This research is funded by a research fellowship from the Royal Commission for the Exhibition of 1851.

Mon, 21 Nov 2022
16:00
L4

Orienteering with one endomorphism

Mingjie Chen
(University of Birmingham)
Abstract

Isogeny-based cryptography is a candidate for post-quantum cryptography. The underlying hardness of isogeny-based protocols is the problem of computing endomorphism rings of supersingular elliptic curves, which is equivalent to the path-finding problem on the supersingular isogeny graph. Can path-finding be reduced to knowing just one endomorphism? An endomorphism gives an explicit orientation of a supersingular elliptic curve. In this talk, we use the volcano structure of the oriented supersingular isogeny graph to take ascending/descending/horizontal steps on the graph and deduce path-finding algorithms to an initial curve. This is joint work with Sarah Arpin, Kristin E. Lauter, Renate Scheidler, Katherine E. Stange and Ha T. N. Tran.

Mon, 30 May 2022
14:15
L5

Drinfeld's conjecture and generalisations

Ana Peón-Nieto
(University of Birmingham)
Abstract

The so called Drinfeld conjecture states that the complement to very stable bundles has pure codimension one in the moduli space of vector bundles. In this talk I will explain a constructive proof in rank three, and discuss if/how it generalises to wobbly fixed points of the nilpotent cone as defined by Hausel and Hitchin. This is joint work with Pauly (Nice).

Fri, 12 Nov 2021

14:00 - 15:00
C3

sl_2-triples in classical Lie algebras over fields of positive characteristic

Rachel Pengelly
(University of Birmingham)
Abstract

Let $K$ be an algebraically closed field. Given three elements of some Lie algebra over $K$, we say that these elements form an $sl_2$-triple if they generate a subalgebra which is a homomorphic image of $sl_2(K).$ In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of $sl_2$-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic $p$. In particular, I will focus on the results in classical Lie algebras, which can be found as subsets of $gl_n(K)$.

Fri, 26 Feb 2021

14:00 - 15:00
Virtual

Fusion Systems and Rank 2 Amalgams

Martin van Beek
(University of Birmingham)
Abstract

Saturated fusion systems capture and abstract conjugacy in $p$-subgroups of finite groups and have recently found application in finite group theory, representation theory and algebraic topology. In this talk, we describe a situation in which we may identify a rank $2$ amalgam within $\mathcal{F}$ and, using some local group theoretic techniques, completely determine $\mathcal{F}$ up to isomorphism.

Fri, 05 Feb 2021

14:00 - 15:00
Virtual

Presheaves on buildings and computing modular representations

Mark Butler
(University of Birmingham)
Abstract

Buildings are geometric structures useful in understanding certain classes of groups. In a series of papers written during the 1980s, Ronan and Smith developed the theory of “presheaves on buildings”. By constructing a coefficient system consisting of kP-modules (where P is the stabiliser of a given simplex), and computing the sheaf homology, they proved several results relating the homology spaces with the irreducible G-modules. In this talk we discuss their methods as well as our implementation of the algorithms, which has allowed us to efficiently compute the irreducible representations of some groups of Lie type.

Thu, 26 Oct 2017
12:00
L4

The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions

Susana Gutierrez
(University of Birmingham)
Abstract

The Landau-Lifshitz-Gilbert equation (LLG) is a continuum model describing the dynamics for the spin in ferromagnetic materials. In the first part of this talk we describe our work concerning the properties and dynamical behaviour of the family of self-similar solutions under the one-dimensional LLG-equation.  Motivated by the properties of this family of self-similar solutions, in the second part of this talk we consider the Cauchy problem for the LLG-equation with Gilbert damping and provide a global well-posedness result provided that the BMO norm of the initial data is small.  Several consequences of this result will be also given.

Subscribe to University of Birmingham