Mon, 16 May 2005
14:15
DH 3rd floor SR

Random walks on critical percolation clusters

Dr. Martin Barlow
(University of British Columbia)
Abstract

It is now known that the overall behaviour of a simple random walk (SRW) on

supercritical (p>p_c) percolation cluster in Z^d is similiar to that of the SRW

in Z^d. The critical case (p=p_c) is much harder, and one needs to define the

'incipient infinite cluster' (IIC). Alexander and Orbach conjectured in 1982

that the return probability for the SRW on the IIC after n steps decays like

n^{2/3} in any dimension. The easiest case is that of trees; this was studied by

Kesten in 1986, but we can now revisit this problem with new techniques.

Mon, 02 May 2005
14:15
DH 3rd floor SR

Diploid branching particle model under rapid stirring

Dr Feng Yu
(University of British Columbia)
Abstract

We study diploid branching particle models and its behaviour when rapid

stirring, i.e. rapid exchange of particles between neighbouring spatial

sites, is added to the interaction. The particle models differ from the

``usual'' models in that they all involve two types of particles, male

and female, and branching can only occur when both types of particles

are present. We establish the existence of nontrivial stationary

distributions for various models when birth rates are sufficiently large.

Subscribe to University of British Columbia