14:15
Random walks on critical percolation clusters
Abstract
It is now known that the overall behaviour of a simple random walk (SRW) on
supercritical (p>p_c) percolation cluster in Z^d is similiar to that of the SRW
in Z^d. The critical case (p=p_c) is much harder, and one needs to define the
'incipient infinite cluster' (IIC). Alexander and Orbach conjectured in 1982
that the return probability for the SRW on the IIC after n steps decays like
n^{2/3} in any dimension. The easiest case is that of trees; this was studied by
Kesten in 1986, but we can now revisit this problem with new techniques.
 
    