Thu, 02 Nov 2006

14:00 - 15:00
Comlab

Multivariate highly oscillatory integration

Mr Sheehan Olver
(University of Cambridge)
Abstract

The aim of this talk is to describe several methods for numerically approximating

the integral of a multivariate highly oscillatory function. We begin with a review

of the asymptotic and Filon-type methods developed by Iserles and Nørsett. Using a

method developed by Levin as a point of departure we will construct a new method that

uses the same information as the Filon-type method, and obtains the same asymptotic

order, while not requiring moments. This allows us to integrate over nonsimplicial

domains, and with complicated oscillators.

Thu, 15 Jun 2006

14:00 - 15:00
Comlab

Numerical simulation of flows with strong density imhomogeneities

Dr Jocelyn Etienne
(University of Cambridge)
Abstract

Strong horizontal gradients of density are responsible for the occurence of a large number of (often catastrophic) flows, such as katabatic winds, dust storms, pyroclastic flows and powder-snow avalanches. For a large number of applications, the overall density contrast in the flow remains small and simulations are carried in the Boussinesq limit, where density variations only appear in the body-force term. However, pyroclastic flows and powder-snow avalanches involve much larger density contrasts, which implies that the inhomogeneous Navier-Stokes equations need to be solved, along with a closure equation describing the mass diffusion. We propose a Lagrange-Galerkin numerical scheme to solve this system, and prove optimal error bounds subject to constraints on the order of the discretization and the time-stepping. Simulations of physical relevance are then shown.

Thu, 27 Oct 2005

14:00 - 15:00
Comlab

Optimization on matrix manifolds

Dr Pierre-Antoine Absil
(University of Cambridge)
Abstract

It is well known that the computation of a few extreme eigenvalues, and the corresponding eigenvectors, of a symmetric matrix A can be rewritten as computing extrema of the Rayleigh quotient of A. However, since the Rayleigh quotient is a homogeneous function of degree zero, its extremizers are not isolated. This difficulty can be remedied by restricting the search space to a well-chosen manifold, which brings the extreme eigenvalue problem into the realm of optimization on manifolds. In this presentation, I will show how a recently-proposed generalization of trust-region methods to Riemannian manifolds applies to this problem, and how the resulting algorithms compare with existing ones.

I will also show how the Joint Diagonalization problem (that is, approximately diagonalizing a collection of symmetric matrices via a congruence transformation) can be tackled by a differential geometric approach. This problem has an important application in Independent Component Analysis.

Thu, 07 Oct 2010

14:00 - 15:00
Gibson Grd floor SR

A fast and simple algorithm for the computation of Legendre coefficients

Prof. Arieh Iserles
(University of Cambridge)
Abstract

We present an O(N logN) algorithm for the calculation of the first N coefficients in an expansion of an analytic function in Legendre polynomials. In essence, the algorithm consists of an integration of a suitably weighted function along an ellipse, a task which can be accomplished with Fast Fourier Transform, followed by some post-processing.

Wed, 02 Dec 2009

11:30 - 12:30
ChCh, Tom Gate, Room 2

Generalized Gelfand--Graev representations for finite groups of Lie type

Matthew Clarke
(University of Cambridge)
Abstract

This talk is about the ordinary representation theory of finite groups of Lie type. I will begin by carefully reviewing algebraic groups and finite groups of Lie type and the construction and properties of (ordinary) Gelfand--Graev characters. I will then introduce generalized Gelfand--Graev characters, which are constructed using the Lie algebra of the ambient algebraic group. Towards the end I hope to give an idea of how generalized Gelfand--Graev characters can and have been used to attack Lusztig's conjecture and the role this plays in the determination of the character tables of finite groups of Lie type.

Subscribe to University of Cambridge