Tue, 30 Jan 2024

14:00 - 15:00
L5

Equivariant vector bundles with connection on the p-adic half-plane

Simon Wadsley
(University of Cambridge)
Abstract

Recent joint work with Konstantin Ardakov has been devoted to classifying equivariant line bundles with flat connection on the Drinfeld p-adic half-plane defined over F, a finite extension of Q_p, and proving that their global sections yield admissible locally analytic representations of GL_2(F) of finite length. In this talk we will discuss this work and invite reflection on how it might be extended to equivariant vector bundles with connection on the p-adic half-plane and, if time permits, to higher dimensional analogues of the half-plane.

Mon, 12 Feb 2024
16:00
L2

Higher descent on elliptic curves

Sven Cats
(University of Cambridge)
Abstract

Let $E$ be an elliptic curve over a number field $K$ and $n \geq 2$ an integer. We recall that elements of the $n$-Selmer group of $E/K$ can be explicitly written in terms of certain equations for $n$-coverings of $E/K$. Writing the elements in this way is called conducting an explicit $n$-descent. One of the applications of explicit $n$-descent is in finding generators of large height for $E(K)$ and from this point of view one would like to be able to take $n$ as large as possible. General algorithms for explicit $n$-descent exist but become computationally challenging already for $n \geq 5$. In this talk we discuss combining $n$- and $(n+1)$-descents to $n(n+1)$-descent and the role that invariant theory plays in this procedure.

Wed, 21 Feb 2024
16:00
L6

Groups Acting Acylindrically on Trees

William Cohen
(University of Cambridge)
Abstract

It was shown by Balasubramanya that any acylindrically hyperbolic group (a natural generalisation of a hyperbolic group) must act acylindrically and non-elementarily on some quasi-tree. It is therefore sensible to ask to what extent this is true for trees, i.e. given an acylindrically hyperbolic group, does it admit a non-elementary acylindrical action on some simplicial tree? In this talk I will introduce the concepts of acylindrically hyperbolic and acylindrically arboreal groups and discuss some particularly interesting examples of acylindrically hyperbolic groups which do and do not act acylindrically on trees.

Tue, 28 Nov 2023

16:00 - 17:00
L1

Euclidean Ramsey Theory

Imre Leader
(University of Cambridge)
Abstract

Euclidean Ramsey Theory is a natural multidimensional version of Ramsey Theory. A subset of Euclidean space is called Ramsey if, for any $k$, whenever we partition Euclidean space of sufficiently high dimension into $k$ classes, one class much contain a congruent copy of our subset. It is still unknown which sets are Ramsey. We will discuss background on this and then proceed to some recent results.

Fri, 24 Nov 2023

12:30 - 13:30

Smooth representations and n coherence of Iwasawa algebras in relations

Vincenzo Di Bartolo
(University of Cambridge)
Abstract

In the context of categorical Langlands, there are many ways in which one could define the notion of n-finitely presented smooth representation. We will explore and compare two different definitions, relating them with the notion of n-coherence for the corresponding Iwasawa ring.

Tue, 21 Nov 2023

16:00 - 17:00
C2

On stability of metric spaces and Kalton's property Q

Andras Zsak
(University of Cambridge)
Abstract

There has been considerable interest in the problem of whether every metric space of bounded geometry coarsely embeds into a uniformly convex Banach space due to the work of Kasparov and Yu that established a connection between such embeddings and the Novikov conjecture. Brown and Guentner were able to prove that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. Kalton significantly extended this result to stable metric spaces and asked whether these classes are coarsely equivalent, i.e. whether every reflexive Banach space coarsely embeds into a stable metric space. Baudier introduced the notion of upper stability, a relaxation of stability, for metric spaces as a new invariant to distinguish reflexive spaces from stable metric spaces. In this talk, we show that in fact, every reflexive space is upper stable and also establish a connection of upper stability to the asymptotic structure of Banach spaces. This is joint work with F. Baudier and Th. Schlumprecht.

Tue, 13 Jun 2023

14:00 - 15:00
L5

A Ramsey Characterisation of Eventually Periodic Words

Maria Ivan
(University of Cambridge)
Abstract

A factorisation $x=u_1u_2\cdots$ of an infinite word $x$ on alphabet $X$ is called ‘super-monochromatic’, for a given colouring of the finite words $X^{\ast}$ on alphabet $X$, if each word $u_{k_1}u_{k_2}\cdots u_{k_n}$, where $k_1<\cdots<k_n$, is the same colour. A direct application of Hindman’s theorem shows that if $x$ is eventually periodic, then for every finite colouring of $X^{\ast}$, there exist a suffix of $x$ that admits a super-monochromatic factorisation. What about the converse?

In this talk we show that the converse does indeed hold: thus a word $x$ is eventually periodic if and only if for every finite colouring of $X^{\ast}$ there is a suffix of $x$ having a super-monochromatic factorisation. This has been a conjecture in the community for some time. Our main tool is a Ramsey result about alternating sums. This provides a strong link between Ramsey theory and the combinatorics of infinite words.

Joint work with Imre Leader and Luca Q. Zamboni

Thu, 26 Oct 2023

12:00 - 13:00
L1

Adjoint-accelerated Bayesian Inference for joint reconstruction and segmentation of Flow-MRI images

Matthew Juniper
(University of Cambridge)
Abstract

We formulate and solve a generalized inverse Navier–Stokes boundary value problem for velocity field reconstruction and simultaneous boundary segmentation of noisy Flow-MRI velocity images. We use a Bayesian framework that combines CFD, Gaussian processes, adjoint methods, and shape optimization in a unified and rigorous manner.
With this framework, we find the velocity field and flow boundaries (i.e. the digital twin) that are most likely to have produced a given noisy image. We also calculate the posterior covariances of the unknown parameters and thereby deduce the uncertainty in the reconstructed flow. First, we verify this method on synthetic noisy images of flows. Then we apply it to experimental phase contrast magnetic resonance (PC-MRI) images of an axisymmetric flow at low and high SNRs. We show that this method successfully reconstructs and segments the low SNR images, producing noiseless velocity fields that match the high SNR images, using 30 times less data.
This framework also provides additional flow information, such as the pressure field and wall shear stress, accurately and with known error bounds. We demonstrate this further on a 3-D in-vitro flow through a 3D-printed aorta and 3-D in-vivo flow through a carotid artery.

Wed, 22 Feb 2023
16:00
L6

Stable commutator length in free and surface groups

Alexis Marchand
(University of Cambridge)
Abstract

Stable commutator length (scl) is a measure of homological complexity in groups that has attracted attention for its various connections with geometric topology and group theory. In this talk, I will introduce scl and discuss the (hard) problem of computing scl in surface groups. I will present some results concerning isometric embeddings of free groups for scl, and how they generalise to surface groups for the relative Gromov seminorm.

Fri, 18 Nov 2022

12:00 - 13:00
N3.12

Realising The Smooth Representations of GL(2,Zp)

Tom Adams
(University of Cambridge)
Abstract

The character table of GL(2,Fq), for a prime power q, was constructed over a century ago. Many of these characters were determined via the explicit construction of a corresponding representation, but purely character-theoretic techniques were first used to compute the so-called discrete series characters. It was not until the 1970s that Drinfeld was able to explicitly construct the corresponding discrete series representations via l-adic étale cohomology groups. This work was later generalised by Deligne and Lusztig to all finite groups of Lie type, giving rise to Deligne-Lusztig theory.

In a similar vein, we would like to construct the representations affording the (smooth) characters of compact groups like GL(2,Zp), where Zp is the ring of p-adic integers. Deligne-Lusztig theory suggests hunting for these representations inside certain cohomology groups. In this talk, I will consider one such approach using a non-archimedean analogue of de Rham cohomology.

Subscribe to University of Cambridge