Thu, 12 May 2022

12:00 - 13:00
L5

Quantitative De Giorgi methods in kinetic theory for non-local operators

Amélie Loher
(University of Cambridge)
Abstract

We derive quantitatively the weak and strong Harnack inequality for kinetic Fokker--Planck type equations with a non-local diffusion operator for the full range of the non-locality exponents in (0,1).  This implies Hölder continuity.  We give novel proofs on the boundedness of the bilinear form associated to the non-local operator and on the construction of a geometric covering accounting for the non-locality to obtain the Harnack inequalities.  Our results apply to the inhomogeneous Boltzmann equation in the non-cutoff case.

Thu, 12 May 2022

17:00 - 18:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Communicating Complex Statistical Ideas to the Public: Lessons from the Pandemic - David Spiegelhalter

David Spiegelhalter
(University of Cambridge)
Further Information

Oxford Mathematics Public Lecture

Communicating Complex Statistical Ideas to the Public: Lessons from the Pandemic - David Spiegelhalter

In-person:Thursday 12 May, 5.00-6.00pm, Mathematical Institute, Oxford

Online: Thursday 19 May, 5.00-6.00pm, Oxford Mathematics YouTube Channel

The pandemic has demonstrated how important data becomes at a time of crisis. But statistics are tricky: they don't always mean what we think they mean, there are many subtle pitfalls, and some people misrepresent their message. Their interpretation is an art. David will describe efforts at communicating about statistics during the pandemic, including both successes and dismal failures.

Professor Sir David Spiegelhalter FRS OBE is Chair of the Winton Centre for Risk and Evidence Communication at the University of Cambridge, which aims to improve the way that statistical evidence is used by health professionals, patients, lawyers and judges, media and policy-makers. He has been very busy over the Covid crisis. His bestselling book, The Art of Statistics, was published in March 2019, and Covid by Numbers came out in October 2021. He was knighted in 2014 for services to medical statistics.

Please email @email to register for the in-person event (the online screening requires no registration).

The lecture will be available on our Oxford Mathematics YouTube Channel on 19th May at 5pm (and can be watched any time after that).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Lecture banner

Thu, 17 Feb 2022
11:30
Virtual

Higher-order generalisations of stability and arithmetic regularity

Julia Wolf
(University of Cambridge)
Abstract

Previous joint work with Caroline Terry had identified model-theoretic stability as a sufficient condition for the existence of strong arithmetic regularity decompositions in finite abelian groups, pioneered by Ben Green around 2003. 
Higher-order arithmetic regularity decompositions, based on Tim Gowers’s groundbreaking work on Szemerédi’s theorem in the late 90s, are an essential part of today's arithmetic combinatorics toolkit.
In this talk, I will describe recent joint work with Caroline Terry in which we define a natural higher-order generalisation of stability and prove that it implies the existence of particularly efficient higher-order arithmetic regularity decompositions in the setting of finite elementary abelian groups. If time permits, I will briefly outline some analogous results we obtain in the context of hypergraph regularity decompositions.

Mon, 07 Feb 2022

15:30 - 16:30
L3

Quantative Hydrodynamic Limits of Stochastic Lattice Systems

CLEMENT MOUHOT
(University of Cambridge)
Abstract

 

I will present a simple abstract quantitative method for proving the hydrodynamic limit of interacting particle systems on a lattice, both in the hyperbolic and parabolic scaling. In the latter case, the convergence rate is uniform in time. This "consistency-stability" approach combines a modulated Wasserstein-distance estimate comparing the law of the stochastic process to the local Gibbs measure, together with stability estimates à la Kruzhkov in weak distance, and consistency estimates exploiting the regularity of the limit solution. It avoids the use of “block estimates” and is self-contained. We apply it to the simple exclusion process, the zero range process, and the Ginzburg-Landau process with Kawasaki dynamics. This is a joint work with Daniel Marahrens and Angeliki Menegaki (IHES).

Mon, 21 Feb 2022

14:00 - 15:00
Virtual

Why things don’t work — On the extended Smale's 9th and 18th problems (the limits of AI) and methodological barriers

Anders Hansen
(University of Cambridge)
Abstract

The alchemists wanted to create gold, Hilbert wanted an algorithm to solve Diophantine equations, researchers want to make deep learning robust in AI, MATLAB wants (but fails) to detect when it provides wrong solutions to linear programs etc. Why does one not succeed in so many of these fundamental cases? The reason is typically methodological barriers. The history of  science is full of methodological barriers — reasons for why we never succeed in reaching certain goals. In many cases, this is due to the foundations of mathematics. We will present a new program on methodological barriers and foundations of mathematics,  where — in this talk — we will focus on two basic problems: (1) The instability problem in deep learning: Why do researchers fail to produce stable neural networks in basic classification and computer vision problems that can easily be handled by humans — when one can prove that there exist stable and accurate neural networks? Moreover, AI algorithms can typically not detect when they are wrong, which becomes a serious issue when striving to create trustworthy AI. The problem is more general, as for example MATLAB's linprog routine is incapable of certifying correct solutions of basic linear programs. Thus, we’ll address the following question: (2) Why are algorithms (in AI and computations in general) incapable of determining when they are wrong? These questions are deeply connected to the extended Smale’s 9th and 18th problems on the list of mathematical problems for the 21st century. 

Mon, 31 Jan 2022

15:30 - 16:30
L3

Distribution dependent SDEs driven by additive continuous and fractional Brownian noise

AVI MAYORCAS
(University of Cambridge)
Abstract

Distribution dependent equations (or McKean—Vlasov equations) have found many applications to problems in physics, biology, economics, finance and computer science. Historically, equations with either Brownian noise or zero noise have received the most attention; many well known results can be found in the monographs by A. Sznitman and F. Golse. More recently, attention has been paid to distribution dependent equations driven by random continuous noise, in particular the recent works by M. Coghi, J-D. Deuschel, P. Friz & M. Maurelli, with applications to battery modelling. Furthermore, the phenomenon of regularisation by noise has received new attention following the works of D. Davie and M. Gubinelli & R. Catellier using techniques of averaging along rough trajectories. Building on these ideas I will present recent joint work with L. Galeati and F. Harang concerning well-posedness and stability results for distribution dependent equations driven first by merely continuous noise and secondly driven by fractional Brownian motion.

 

Fri, 26 Nov 2021

14:00 - 15:00
N3.12

Extensions of Specht modules and p-ary designs

Liam Jolliffe
(University of Cambridge)
Abstract

The Specht modules are of fundamental importance to the representation theory of the symmetric group, and their 0th cohomology is understood through entirely combinatorial methods due to Gordon James. Over fields of odd characteristic, Hemmer proposed a similar combinatorial approach to calculating their 1st degree cohomology, or extensions by the trivial module. This combinatorial approach motivates the definition of universal $p$-ary designs, which we shall classify. We then explore the consequences of this classification to problem of determining extensions of Specht modules. In particular, we classify all extensions of Specht modules indexed by two-part partitions by the trivial module and shall see some far-reaching conditions on when the first cohomology of a Specht module is trivial.

Wed, 17 Nov 2021

16:00 - 17:00
C5

Cubulating groups acting on polygonal complexes

Calum Ashcroft
(University of Cambridge)
Abstract

Given a group G acting on a CAT(0) polygonal complex, X, it is natural to ask whether the structure of X allows us to deduce properties of G. We discuss some recent work on local properties that X may possess which allow us to answer these questions - in many cases we can in fact deduce that the group is a linear group over Z.

Thu, 18 Nov 2021
14:00
L4

Infinite-Dimensional Spectral Computations

Matt Colbrook
(University of Cambridge)
Abstract

Computing spectral properties of operators is fundamental in the sciences, with applications in quantum mechanics, signal processing, fluid mechanics, dynamical systems, etc. However, the infinite-dimensional problem is infamously difficult (common difficulties include spectral pollution and dealing with continuous spectra). This talk introduces classes of practical resolvent-based algorithms that rigorously compute a zoo of spectral properties of operators on Hilbert spaces. We also discuss how these methods form part of a broader programme on the foundations of computation. The focus will be computing spectra with error control and spectral measures, for general discrete and differential operators. Analogous to eigenvalues and eigenvectors, these objects “diagonalise” operators in infinite dimensions through the spectral theorem. The first is computed by an algorithm that approximates resolvent norms. The second is computed by building convolutions of appropriate rational functions with the measure via the resolvent operator (solving shifted linear systems). The final part of the talk provides purely data-driven algorithms that compute the spectral properties of Koopman operators, with convergence guarantees, from snapshot data. Koopman operators “linearise” nonlinear dynamical systems, the price being a reduction to an infinite-dimensional spectral problem (c.f. “Koopmania”, describing their surge in popularity). The talk will end with applications of these new methods in several thousand state-space dimensions.

Fri, 29 Oct 2021

14:00 - 15:00
L3

Design and control of biochemical reaction networks

Dr Tomislav Plesa
(University of Cambridge)
Abstract

Many scientific questions in biology can be formulated as a direct problem:

given a biochemical system, can one deduce some of its properties? 

For example, one might be interested in deducing equilibria of a given intracellular network.  On the other hand, one might instead be interested in designing an intracellular network with specified equilibria. Such scientific tasks take the form of inverse problems:
given a property, can one design a biochemical system that displays this property? 

Given a biochemical system, can one embed additional molecular species and reactions into the original system to control some of its properties?
These questions are at the heart of the emerging field of synthetic biology, where it has recently become possible to systematically realize dynamical systems using molecules.  Furthermore, addressing these questions for man-made synthetic systems may also shed light on how evolution has overcome similar challenges for natural systems.  In this talk, I will focus on the inverse problems, and outline some of the results and challenges which are important when biochemical systems are designed and controlled.

Subscribe to University of Cambridge