Thu, 25 Mar 2021

16:00 - 17:00
Virtual

Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions

Fabrice Baudoin
(University of Connecticut)
Further Information
Abstract

We study several matrix diffusion processes constructed from a unitary Brownian motion. In particular, we use the Stiefel fibration to lift the Brownian motion of the complex Grass- mannian to the complex Stiefel manifold and deduce a skew-product decomposition of the Stiefel Brownian motion. As an application, we prove asymptotic laws for the determinants of the block entries of the unitary Brownian motion.

Mon, 11 Nov 2019

14:15 - 15:15
L4

Green's function estimates and the Poisson equation

Ovidiu Munteanu
(University of Connecticut)
Further Information

 

 

Abstract

The Green's function of the Laplace operator has been widely studied in geometric analysis. Manifolds admitting a positive Green's function are called nonparabolic. By Li and Yau, sharp pointwise decay estimates are known for the Green's function on nonparabolic manifolds that have nonnegative Ricci
curvature. The situation is more delicate when curvature is not nonnegative everywhere. While pointwise decay estimates are generally not possible in this
case, we have obtained sharp integral decay estimates for the Green's function on manifolds admitting a Poincare inequality and an appropriate (negative) lower bound on Ricci curvature. This has applications to solving the Poisson equation, and to the study of the structure at infinity of such manifolds.

Thu, 07 Nov 2019

16:00 - 17:00
L4

Sensitivity Analysis of the Utility Maximization Problem with Respect to Model Perturbations

Oleksii Mostovyi
(University of Connecticut)
Abstract

First, we will give a brief overview of the asymptotic analysis results in the context of optimal investment. Then, we will focus on the sensitivity of the expected utility maximization problem in a continuous semimartingale market with respect to small changes in the market price of risk. Assuming that the preferences of a rational economic agent are modeled by a general utility function, we obtain a second-order expansion of the value function, a first-order approximation of the terminal wealth, and construct trading strategies that match the indirect utility function up to the second order. If a risk-tolerance wealth process exists, using it as numeraire and under an appropriate change of measure, we reduce the approximation problem to a Kunita–Watanabe decomposition. Then we discuss possible extensions and special situations, in particular, the power utility case and models that admit closed-form solutions. The central part of this talk is based on the joint work with Mihai Sirbu.

Tue, 17 May 2011

15:45 - 16:45
L3

Towards Bridgeland stability conditions on threefolds

Arend Bayer
(University of Connecticut)
Abstract

I will discuss a conjectural Bogomolov-Gieseker type inequality for "tilt-stable" objects in the derived category of coherent sheaves on smooth projective threefolds. The conjecture implies the existence of Bridgeland stability conditions on threefolds, and also has implications to birational geometry: it implies a slightly weaker version of Fujita's conjecture on very ampleness of adjoint line bundles.

Subscribe to University of Connecticut