Fri, 23 May 2025

12:00 - 13:00
Quillen Room

Representations of filtered but non integer-graded infinite-dimensional Lie algebras

Girish Vishwa
(University of Edinburgh)
Abstract

This talk will be a case study on the recently discovered boundary Carrollian conformal algebra (BCCA) in theoretical physics. It is an infinite-dimensional subalgebra of an abelian extension of the Witt algebra. A striking feature of this is that it is not integer graded; this already puts us in a rather novel setting, since infinite-dimensional Lie algebras almost exclusively appear with integer grading in physics. But this means that there is new ground to be broken in this direction of research. In this talk, I will present some very early results from our attempt at studying the representations of the BCCA. Any thoughts and comments are very welcome as they could be immensely helpful for us to navigate these unfamiliar waters!

Wed, 30 Apr 2025
15:30
C1

Uniqueness of gauge covariant renormalisation of stochastic 3D Yang-Mills

Ilya Chevyrev
(University of Edinburgh)
Abstract

In this talk, I will describe a family of observables for 3D quantum Yang-Mills theory based on regularising connections with the YM heat flow. I will describe how these observables can be used to show that there is a unique renormalisation of the stochastic quantisation equation of YM in 3D that preserves gauge symmetries. This complements a recent result on the existence of such a renormalisation. Based on joint work with Hao Shen.

Fri, 14 Mar 2025
15:30
N3.12

Chiral worldsheet model for pure N=4 Super Yang-Mills

Sean Seet
(University of Edinburgh)
Abstract
It is a remarkable fact (first observed by Witten in 2004) that holomorphic curves in twistor space underpin scattering amplitude calculations in N=4 Super Yang-Mills, spurring decades of work on twistor actions. The explicit realisation of this fact from a twistor string calculation, however, is somewhat marred by the presence of non-Yang-Mills (N=4 conformal supergravity) intermediates present even in tree level calculations. This pathology first appears as the presence of multi-trace terms even at tree level, indicating the exchange of non Yang-Mills intermediates.
 
In this talk we present a new chiral worldsheet model (2504.xxxx) that is free from non-Yang-Mills intermediates and computes N=4 super Yang-Mills amplitudes at tree and loop level (with some caveats). The main contribution is the removal of the non-Yang-Mills intermediates and a simple prescription for computing higher genus correlators.
 
Thu, 08 May 2025
14:00
(This talk is hosted by Rutherford Appleton Laboratory)

Multilevel Monte Carlo Methods with Smoothing

Aretha Teckentrup
(University of Edinburgh)
Abstract

Parameters in mathematical models are often impossible to determine fully or accurately, and are hence subject to uncertainty. By modelling the input parameters as stochastic processes, it is possible to quantify the uncertainty in the model outputs. 

In this talk, we employ the multilevel Monte Carlo (MLMC) method to compute expected values of quantities of interest related to partial differential equations with random coefficients. We make use of the circulant embedding method for sampling from the coefficient, and to further improve the computational complexity of the MLMC estimator, we devise and implement the smoothing technique integrated into the circulant embedding method. This allows to choose the coarsest mesh on the  first level of MLMC independently of the correlation length of the covariance function of the random  field, leading to considerable savings in computational cost.

 

 

Please note; this talk is hosted by Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX

 

 

 

Mon, 26 May 2025
15:30
L3

Transport of Gaussian measures under the flow of semilinear (S)PDEs: quasi-invariance and singularity.

Dr. Leonardo Tolomeo
(University of Edinburgh)
Abstract

In this talk, we consider the Cauchy problem for a number of semilinear PDEs, subject to initial data distributed according to a family of Gaussian measures.  

We first discuss how the flow of Hamiltonian equations transports these Gaussian measures. When the transported measure is absolutely continuous with respect to the initial measure, we say that the initial measure is quasi-invariant. 

In the high-dispersion regime, we exploit quasi-invariance to build a (unique) global flow for initial data with negative regularity, in a regime that cannot be replicated by the deterministic (pathwise) theory.  

In the 0-dispersion regime, we discuss the limits of this approach, and exhibit a sharp transition from quasi-invariance to singularity, depending on the regularity of the initial measure. 

We will also discuss how the same techniques can be used in the context of stochastic PDEs, and how they provide information on the invariant measures for their flow. 

This is based on joint works with  J. Coe (University of Edinburgh), J. Forlano (Monash University), and M. Hairer (EPFL).

Thu, 22 May 2025

14:00 - 15:00
Lecture Room 3

When you truncate an infinite equation, what happens to the leftovers?

Geoff Vasil
(University of Edinburgh)
Abstract

Numerically solving PDEs typically requires compressing infinite information into a finite system of algebraic equations. Pragmatically, we usually follow a recipe: “Assume solutions of form X; substitute into PDE Y; discard terms by rule Z.” In contrast, Lanczos’s pioneering “tau method” prescribes modifying the PDE to form an exact finite system. Crucially, any recipe-based method can be viewed as adding a small equation correction, enabling us to compare multiple schemes independently of the solver. 

This talk also addresses a paradox: PDEs often admit infinitely many solutions, but finite systems produce only a finite set. When we include a “small” correction, the missing solutions are effectively hidden. I will discuss how tau methods frame this perspective and outline proposals for systematically studying and optimising various residuals.

Mon, 06 May 2024
15:30
L5

Factorization algebras in quite a lot of generality

Clark Barwick
(University of Edinburgh)
Abstract

The objects of arithmetic geometry are not manifolds. Some concepts from differential geometry admit analogues in arithmetic, but they are not straightforward. Nevertheless, there is a growing sense that the right way to understand certain Langlands phenomena is to study quantum field theories on these objects. What hope is there of making this thought precise? I will propose the beginnings of a mathematical framework via a general theory of factorization algebras. A new feature is a subtle piece of additional structure on our objects – what I call an _isolability structure_ – that is ordinarily left implicit.

Fri, 10 May 2024

12:00 - 13:00
Quillen Room

The orbit method for the Witt algebra

Tuan Pham
(University of Edinburgh)
Abstract

The orbit method is a fundamental tool to study a finite dimensional solvable Lie algebra g. It relates the annihilators of simple U(g)-module to the coadjoint orbits of the adjoint group on g^* . In my talk, I will extend this story to the Witt algebra – a simple (non-solvable) infinite dimensional Lie algebra which is important in physics and representation theory. I will construct an induced module from an element of W^* and show that its annihilator is a primitive ideal. I will also construct an algebra homomorphism that allows one to relate the orbit method for W to that of a finite dimensional solvable algebra.

Fri, 10 May 2024

12:00 - 13:15
L3

Chiralization of cluster structures

Mikhail Bershstein
(University of Edinburgh)
Abstract

The chiralization in the title denotes a certain procedure which turns cluster X-varieties into q-W algebras. Many important notions from cluster and q-W worlds, such as mutations, global functions, screening operators, R-matrices, etc emerge naturally in this context. In particular, we discover new bosonizations of q-W algebras and establish connections between previously known bosonizations. If time permits, I will discuss potential applications of our approach to the study of 3d topological theories and local systems with affine gauge groups. This talk is based on a joint project with J. Shiraishi, J.E. Bourgine, B. Feigin, A. Shapiro, and G. Schrader.

Mon, 27 May 2024

14:00 - 15:00
Lecture Room 3

Dynamic Sparsity: Routing Information through Neural Pathways

Edoardo Ponti
(University of Edinburgh)
Abstract
Recent advancements in machine learning have caused a shift from traditional sparse modelling, which focuses on static feature selection in neural representations, to a paradigm based on selecting input or task-dependent pathways within neural networks. 
In fact, the ability to selectively (de)activate portions of neural computation graphs provides several advantages, including conditional computation, efficient parameter scaling, and compositional generalisation. 
 
In this talk, I will explore how sparse subnetworks can be identified dynamically and how parametric routing functions allow for recombining and locally adapting them in Large Language Models.


 

Subscribe to University of Edinburgh