Mon, 20 Nov 2017

14:15 - 15:15
L5

In search of the extended Kac-Moody Lie algebra

Ben Davison
(University of Glasgow)
Abstract

Associated to a finite graph without loops is the Kac-Moody Lie algebra for the Cartan matrix whose off diagonal entries are (minus) the adjacency matrix for the graph.  Two famous conjectures of Kac, proved by Hausel, Letellier and Villegas, hint that there may be some larger cohomologically graded algebra associated to the graph (even if there are loops), providing "higher" Kac moody Lie algebras, or at least their positive halves.  Using work with Sven Meinhardt, I will give a geometric construction of the (full) Kac-Moody algebra for a general finite graph, using cohomological DT theory.  Along the way we'll see a proof of the positivity conjecture for the modified Kac polynomials of Bozec, Schiffmann and Vasserot counting various types of representations of quivers.

 

Thu, 09 Nov 2017

16:00 - 17:30
L3

Phase-Ordering and the Principle of G-Equivariant Universality

Stephen Watson
(University of Glasgow)
Abstract

The statistical physics governing phase-ordering dynamics following a symmetry breaking rst-order phase transition is an area of active research. The Coarsening/Ageing of the ensemble of phase domains, wherein irreversible annihilation or joining of domains yields a growing characteristic domain length, is an omniprescent feature whose universal characteristics one would wish to understand. Driven kinetic Ising models and growing nano-faceted crystals are theoretically important examples of such Coarsening (Ageing) Dynamical Systems (CDS), since they additionally break thermodynamic uctuation-dissipation relations. Power-laws for the growth in time of the characteristic size of domains, and a concomitant scale-invariance of associated length distributions, have so frequently been empirically observed that their presence has acquired the status of a principle; the so-called Dynamic-Scaling Hypothesis. But the dynamical symmetries of a given CDS- its Coarsening Group G - may include more than the global spatio-temporal scalings underlying the Dynamic Scaling Hypothesis. In this talk, I will present a recently developed theoretical framework (Ref.[1]) that shows how the symmetry group G of a Coarsening (ageing) Dynamical System necessarily yields G-equivariance (covariance) of its universal statistical observables. We exhibit this theory for a variety of model systems, of both thermodynamic and driven type, with symmetries that may also be Emergent (Ref. [2,3]) and/or Hidden. We will close with a magical theoretical coarsening law that combines Lorentzian and Parabolic symmetries!

References
[1] Lorentzian symmetry predicts universality beyond scaling laws, SJ Watson, EPL 118 (5), 56001, (Aug.2, 2017) Editor's Choice
[2] Emergent parabolic scaling of nano-faceting crystal growth Stephen J. Watson, Proc. R. Soc. A 471: 20140560 (2015)
[3] Scaling Theory and Morphometrics for a Coarsening Multiscale Surface, via a Principle of Maximal Dissipation", Stephen

Tue, 27 Oct 2015

14:15 - 15:30
L4

Symplectic resolutions of quiver varieties.

Gwyn Bellamy
(University of Glasgow)
Abstract

Quiver varieties, as introduced by Nakaijma, play a key role in representation theory. They give a very large class of symplectic singularities and, in many cases, their symplectic resolutions too. However, there seems to be no general criterion in the literature for when a quiver variety admits a symplectic resolution. In this talk I will give necessary and sufficient conditions for a quiver variety to admit a symplectic resolution.  This result is based on work of Crawley-Bouvey and of Kaledin, Lehn and Sorger. The talk is based on joint work with T. Schedler.
 

Fri, 04 Mar 2011

14:00 - 15:00
L1

From maladaptivity to adaptivity -the evolution of developmental timing

Dr Christina Cobbold
(University of Glasgow)
Abstract

The timing of developmental milestones such as egg hatch or bud break

can be important predictors of population success and survival. Many

insect species rely directly on temperature as a cue for their

developmental timing. With environments constantly under presure to

change, developmental timing has become highly adaptive in order to

maintain seasonal synchrony. However, climatic change is threatening

this synchrony.

Our model couples existing models of developmental timing to a

quatitative genetics framework which descibes the evolution of

developmental parameters. We use this approach to examine the ability of a

population to adapt to an enviroment that it is highly maladapted to.

Through a combination of numerical and analtyical approaches we explore

the dynamics of the infinite dimensional system of

integrodifference equations. The model indicates that developmental timing

is surprisingly robust in its ability to maitain synchrony even under

climatic change which works constantly to maintain maladaptivity.

Subscribe to University of Glasgow