Tue, 31 May 2022

16:00 - 17:00
C1

An introduction to Hirschman-Widder densities and their preservers

Alex Belton
(University of Lancaster)
Abstract

Hirschman-Widder densities may be viewed as the probability density functions of positive linear combinations of independent and identically distributed exponential random variables. They also arise naturally in the study of Pólya frequency functions, which are integrable functions that give rise to totally positive Toeplitz kernels. This talk will introduce the class of Hirschman-Widder densities and discuss some of its properties. We will demonstrate connections to Schur polynomials and to orbital integrals. We will conclude by describing the rigidity of this class under composition with polynomial functions.

 This is joint work with Dominique Guillot (University of Delaware), Apoorva Khare (Indian Institute of Science, Bangalore) and Mihai Putinar (University of California at Santa Barbara and Newcastle University).

Mon, 06 Jun 2022
14:15
L5

Symplectic cohomology of compound Du Val singularities

Jonny Evans
(University of Lancaster)
Abstract

(Joint with Y. Lekili) If someone gives you a variety with a singular point, you can try and get some understanding of what the singularity looks like by taking its “link”, that is you take the boundary of a neighbourhood of the singular point. For example, the link of the complex plane curve with a cusp $y^2 = x^3$ is a trefoil knot in the 3-sphere. I want to talk about the links of a class of 3-fold singularities which come up in Mori theory: the compound Du Val (cDV) singularities. These links are 5-dimensional manifolds. It turns out that many cDV singularities have the same 5-manifold as their link, and to tell them apart you need to keep track of some extra structure (a contact structure). We use symplectic cohomology to distinguish the contact structures on many of these links.

Mon, 04 Nov 2019

15:45 - 16:45
L3

Scaling limits for planar aggregation with subcritical fluctuations

AMANDA TURNER
(University of Lancaster)
Abstract


Planar random growth processes occur widely in the physical world. Examples include diffusion-limited aggregation (DLA) for mineral deposition and the Eden model for biological cell growth. One approach to mathematically modelling such processes is to represent the randomly growing clusters as compositions of conformal mappings. In 1998, Hastings and Levitov proposed one such family of models, which includes versions of the physical processes described above. An intriguing property of their model is a conjectured phase transition between models that converge to growing disks, and 'turbulent' non-disk like models. In this talk I will describe a natural generalisation of the Hastings-Levitov family in which the location of each successive particle is distributed according to the density of harmonic measure on the cluster boundary, raised to some power. In recent joint work with Norris and Silvestri, we show that when this power lies within a particular range, the macroscopic shape of the cluster converges to a disk, but that as the power approaches the edge of this range the fluctuations approach a critical point, which is a limit of stability. This phase transition in fluctuations can be interpreted as the beginnings of a macroscopic phase transition from disks to non-disks analogous to that present in the Hastings-Levitov family.
 

Tue, 06 Feb 2018
14:15
L4

Dual singularities in exceptional type nilpotent cones

Paul Levy
(University of Lancaster)
Abstract

It is well-known that nilpotent orbits in $\mathfrak{sl}_n(\mathbb C)$ correspond bijectively with the set of partitions of $n$, such that the closure (partial) ordering on orbits is sent to the dominance order on partitions. Taking dual partitions simply turns this poset upside down, so in type $A$ there is an order-reversing involution on the poset of nilpotent orbits. More generally, if $\mathfrak g$ is any simple Lie algebra over $\mathbb C$ then Lusztig-Spaltenstein duality is an order-reversing bijection from the set of special nilpotent orbits in $\mathfrak g$ to the set of special nilpotent orbits in the Langlands dual Lie algebra $\mathfrak g^L$.
It was observed by Kraft and Procesi that the duality in type $A$ is manifested in the geometry of the nullcone. In particular, if two orbits $\mathcal O_1<\mathcal O_2$ are adjacent in the partial order then so are their duals $\mathcal O_1^t>\mathcal O_2^t$, and the isolated singularity attached to the pair $(\mathcal O_1,\mathcal O_2)$ is dual to the singularity attached to $(\mathcal O_2^t,\mathcal O_1^t)$: a Kleinian singularity of type $A_k$ is swapped with the minimal nilpotent orbit closure in $\mathfrak{sl}_{k+1}$ (and vice-versa). Subsequent work of Kraft-Procesi determined singularities associated to such pairs in the remaining classical Lie algebras, but did not specifically touch on duality for pairs of special orbits.
In this talk, I will explain some recent joint research with Fu, Juteau and Sommers on singularities associated to pairs $\mathcal O_1<\mathcal O_2$ of (special) orbits in exceptional Lie algebras. In particular, we (almost always) observe a generalized form of duality for such singularities in any simple Lie algebra.
 

Wed, 23 Aug 2017

15:00 - 16:00
L6

On endotrivial modules for finite reductive groups.

Nadia Mazza (Lancaster)
(University of Lancaster)
Abstract

Abstract: Joint work with Carlson, Grodal, Nakano. In this talk we will
present some recent results on an 'important' class of modular 
representations for an 'important' class of finite groups. For the 
convenience of the audience, we'll briefly review the notion of an 
endotrivial module and present the main results pertaining endotrivial 
modules and finite reductive groups which we use in our ongoing work.

Mon, 20 Jan 2014

17:00 - 18:00
L6

A logarithmic Sobolev inequality for the invariant measure of the periodic Korteweg--de Vries equation

Gordon Blower
(University of Lancaster)
Abstract

The periodic KdV equation $u_t=u_{xxx}+\beta uu_x$ arises from a Hamiltonian system with infinite-dimensional phase space $L^2({\bf T})$. Bourgain has shown that there exists a Gibbs probability measure $\nu$ on balls $\{\phi :\Vert \phi\Vert^2_{L^2}\leq N\}$ in the phase space such that the Cauchy problem for KdV is well posed on the support of $\nu$, and $\nu$ is invariant under the KdV flow. This talk will show that $\nu$ satisfies a logarithmic Sobolev inequality. The seminar presents logarithmic Sobolev inequalities for the modified periodic KdV equation and the cubic nonlinear Schr\"odinger equation. There will also be recent results from Blower, Brett and Doust regarding spectral concentration phenomena for Hill's equation.

Tue, 26 Nov 2013

17:00 - 18:00
C5

Discrete groups and continuous rings

Gabor Elek
(University of Lancaster)
Abstract
One of the most classical questions of modern algebra is whether the group algebra of a torsion-free group can be embedded into a skew field. I will give a short survey about embeddability of group algebras into skew fields, matrix rings and, in general, continuous rings.
Subscribe to University of Lancaster