Tue, 17 Jun 2025
14:00
C6

Lagrangian mean curvature flow out of conical singularities

Spandan Ghosh
(University of Oxford)
Abstract

Lagrangian mean curvature flow (LMCF) is a way to deform Lagrangian submanifolds inside a Calabi-Yau manifold according to the negative gradient of the area functional. There are influential conjectures about LMCF due to Thomas-Yau and Joyce, describing the long-time behaviour of the flow, singularity formation, and how one may flow past singularities. In this talk, we will show how to flow past a conically singular Lagrangian by gluing in expanders asymptotic to the cone, generalizing an earlier result by Begley-Moore. We solve the problem by a direct P.D.E.-based approach, along the lines of recent work by Lira-Mazzeo-Pluda-Saez on the network flow. The main technical ingredient we use is the notion of manifolds with corners and a-corners, as introduced by Joyce following earlier work of Melrose.

Thu, 22 May 2025

17:00 - 18:00
L3

Axioms of Quantum Mechanics in the light of Continuous Model Theory​

Boris Zilber
(University of Oxford)
Abstract

I am going to start by reviewing axioms of quantum mechanics, which in fact give a description of a Hilbert space. I will argue that the language that Dirac and his followers developed is that of continuous logic and the form of axiomatisation is that of "algebraic logic" in the sense of A. Tarski's cylindric algebras. In fact, Hilbert spaces can be seen as a continuous model theory version of cylindric algebras.

Thu, 22 May 2025

11:00 - 12:00
C5

Modal group theory

Wojciech Wołoszyn
(University of Oxford)
Abstract

I introduce modal group theory, where one investigates the class of all groups using embeddability as a modal operator. By employing HNN extensions, I demonstrate that the modal language of groups is more expressive than the first-order language of groups. Furthermore, I establish that the theory of true arithmetic, viewed as sets of Gödel numbers, is computably isomorphic to the modal theory of finitely presented groups. Finally, I resolve an open question posed by Sören Berger, Alexander Block, and Benedikt Löwe by proving that the propositional modal validities of groups constitute precisely the modal logic S4.2.

Fri, 20 Jun 2025

12:00 - 13:00
Quillen Room

How to solve the Rubik's cube?

Mario Marcos Losada
(University of Oxford)
Abstract

Let p be a prime. In this talk we look at the bounded derived category of modules over the Rubik’s cube group and show that the faithful action on the corners and edges is a progenerator for the coadmissible subcategory.

Thu, 19 Jun 2025

11:00 - 12:00
C5

30 years since the Galois characterisation of ℚₚ — Part II.

Benedikt Stock
(University of Oxford)
Abstract

Building on Leo’s talk last week, I will present the full Galois characterisation of henselianity and introduce some of the ‘explicit’ ingredients he referred to during his presentation. In particular, I will describe a Galois cohomology-inspired criterion for distinguishing between different characteristics. I will then outline the full proof of the Galois characterisation of p-adically closed fields, indicating how each of the ingredients enters the argument.

Thu, 12 Jun 2025

11:00 - 12:00
C5

30 years since the Galois characterisation of ℚₚ — Part I

Leo Gitin
(University of Oxford)
Abstract

The absolute Galois group of ℚₚ determines its field structure: a field K is p-adically closed if and only if its absolute Galois group is isomorphic to that of ℚₚ. This Galois-theoretic characterisation was proved by Koenigsmann in 1995, building on previous work by Arason, Elman, Jacob, Ware, and Pop. Similar results were obtained by Efrat and further developed in his 2006 book.

Our project aims to provide an optimal proof of this characterisation, incorporating improvements and new developments. These include a revised proof strategy; Efrat's construction of valuations via multiplicative stratification; the Galois characterisation of henselianity; systematic use of the standard decomposition; and the function field analogy of Krasner-Kazhdan-Deligne type. Moreover, we replace arguments that use Galois cohomology with elementary ones.

In this talk, I will focus on two key components of the proof: the construction of valuations from rigid elements, and the role of the function field analogy as developed via the non-standard methods of Jahnke-Kartas.

This is joint work with Jochen Koenigsmann and Benedikt Stock.

Thu, 29 May 2025

11:00 - 12:00
C5

Fields with the absolute Galois group of Q

Jochen Koenigsmann
(University of Oxford)
Abstract
This is a report on work in progress aiming to prove the conjecture that if the absolute Galois group of a field K is isomorphic to that of \Q then K admits a (possibly trivial) henselian valuation with divisible value group and residue field \Q. What I can prove is that such a field K has a unique ordering and unique p-adic valuations, and that K satisfies Cebotarev's density theorem, Kronecker-Weber, Hasse-Minkowski, quadratic reciprocity etc.
We will show that our conjecture is equivalent to the birational version of Grothendieck's Section Conjecture over \Q, and we will discuss a model theoretic strengthening of our conjecture.
Wed, 21 May 2025
17:30
Lecture Theatre 1

Blueprints: how mathematics shapes creativity - Marcus du Sautoy

Marcus du Sautoy
(University of Oxford)
Further Information

Many of the artists that we encounter are completely unaware of the mathematics that bubble beneath their craft, while some consciously use it for inspiration. Our instincts might tell us that these two subjects are incompatible forces with nothing in common, mathematics being the realm of precise logic and art being the realm of emotion and aesthetics. But what if we’re wrong?

Marcus du Sautoy unpacks how we make art, why a creative mindset is vital for discovering mathematics, and how a fundamental connection to the natural world intrinsically links the two subjects. 

Marcus du Sautoy is a mathematician, author and broadcaster. He is Charles Simonyi Professor for the Public Understanding of Science in Oxford.

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 11 June at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Mon, 05 May 2025
16:00
L6

Modular arithmetic in the lambda-calculus

Maximilien Mackie
(University of Oxford)
Abstract

The lambda-calculus was invented to formalise arithmetic by encoding numbers and operations as abstract functions. We will introduce the lambda-calculus and present two encodings of modular arithmetic: the first is a recipe to quotient your favourite numeral system, and the second is purpose-built for modular arithmetic. A highlight of the second approach is that it does not require recursion i.e., it is defined without fixed-point operators. If time allows, we will also give an implementation of the Chinese remainder theorem which improves computational efficiency. 

Subscribe to University of Oxford