Thu, 27 Feb 2020

17:00 - 18:30
L1

Hidden histories: Oxford’s female computing pioneers

Ursula Martin, Georgina Ferry and Panel
(University of Oxford)
Further Information

Join us in Oxford Mathematics on 27th February 2020 for a talk and discussion celebrating the Bodleian Libraries' release of interviews by Georgina Ferry of some of Oxford’s female computing pioneers.

Some remarkable women shaped Oxford computing: Dorothy Hodgkin won the Nobel Prize for work on insulin; Susan Hockey pioneered digital humanities; Shirley Carter, Linda Hayes and Joan Walsh got the pioneering software company NAG off the ground in 1970; and female operators and programmers were at the heart of the early large-scale computing efforts powering 20th-century science.

4.30pm: Welcome tea
5.00pm: Professor June Barrow-Green - Hidden histories: Oxford’s female computing pioneers
5.45pm: Panel discussion chaired by science writer Georgina Ferry and featuring some of the the pioneers themselves

No need to register.

Tue, 10 Dec 2019 09:00 -
Tue, 31 Mar 2020 18:00
South Mezz Circulation

The Penrose Proofs: an exhibition of Roger Penrose’s Scientific Drawings 1-6

Roger Penrose
(University of Oxford)
Further Information

As you might expect from a man whose family included the Surrealist artist Roland Penrose, Roger Penrose has always thought visually. That thinking is captured brilliantly in this selection of Roger’s drawings that he produced for his published works and papers.

From quasi-symmetric patterns to graphic illustrations of the paradoxical three versions of reality via twistor theory and the brain, this selection captures the stunning range of Roger’s scientific work and the visual thinking that inspires and describes it.

Mezzanine Level
Mathematical Institute
Oxford

10 December 2019- 31 March 2020

[[{"fid":"56998","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Thu, 13 Feb 2020

17:00 - 18:00
L1

Oxford Mathematics Public Lecture: Ian Griffiths - Cheerios, iPhones and Dysons: going backwards in time with fluid mechanics

Ian Griffiths
(University of Oxford)
Further Information

How do you make a star-shaped Cheerio? How do they make the glass on your smartphone screen so flat? And how can you make a vacuum filter that removes the most dust before it blocks? All of these are very different challenges that fall under the umbrella of industrial mathematics. While each of these questions might seem very different, they all have a common theme: we know the final properties of the product we want to make and need to come up with a way of manufacturing this. In this talk we show how we can use mathematics to start with the final desired product and trace the fluid dynamics problem ‘back in time’ to enable us to manufacture products that would otherwise be impossible to produce.

Ian Griffiths is a Professor of Industrial Mathematics and a Royal Society University Research Fellow in the Mathematical Institute at the University of Oxford. 

Please email @email to register.

Watch live:
https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Griffiths

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

 

 

 

Thu, 24 Oct 2019
13:00

Industrial agglomeration and diversification

Dr Samuel Heroy
(University of Oxford)
Abstract

As early as the 1920's Marshall suggested that firms co-locate in cities to reduce the costs of moving goods, people, and ideas. These 'forces of agglomeration' have given rise, for example, to the high tech clusters of San Francisco and Boston, and the automobile cluster in Detroit. Yet, despite its importance for city planners and industrial policy-makers, until recently there has been little success in estimating the relative importance of each Marshallian channel to the location decisions of firms.
Here we explore a burgeoning literature that aims to exploit the co-location patterns of industries in cities in order to disentangle the relationship between industry co-agglomeration and customer/supplier, labour and idea sharing. Building on previous approaches that focus on across- and between-industry estimates, we propose a network-based method to estimate the relative importance of each Marshallian channel at a meso scale. Specifically, we use a community detection technique to construct a hierarchical decomposition of the full set of industries into clusters based on co-agglomeration patterns, and show that these industry clusters exhibit distinct patterns in terms of their relative reliance on individual Marshallian channels.

The second part is to use industry relatedness, which we measure via a similar metric to co-location, to better understand the association of industrial emissions to city-industry agglomeration. Specifically, we see that industrial emissions (which are the largest source of greenhouse emissions in the US) are highly tied to certain industries, and furthermore that communities in the industry relatedness network tend to explain the tendency of particular industry clusters to produce emissions. This is important, because it limits cities' abilities to move to a greener industry basket as some cities may be more or less constrained to highly polluting industry clusters, while others have more potential for diversification away from polluting industries.

Wed, 04 Dec 2019
11:00
N3.12

Random Groups

David Hume
(University of Oxford)
Abstract

Finitely presented groups are a natural algebraic generalisation of the collection of finite groups. Unlike the finite case there is almost no hope of any kind of classification.

The goal of random groups is therefore to understand the properties of the "typical" finitely presented group. I will present a couple of models for random groups and survey some of the main theorems and open questions in the area, demonstrating surprising correlations between these probabilistic models, geometry and analysis.

Tue, 26 Nov 2019

14:00 - 15:00
L6

Partial Associativity in Latin Squares

Jason Long
(University of Oxford)
Further Information

Latin squares arise from the multiplication tables of groups, but the converse is not true in general. Given a Latin square A, we can define a group operation giving A as its multiplication table only when A satisfies a suitable associativity constraint. This observation leads to a natural question concerning the '1%' version: if A is only partially associative, can we still obtain something resembling a group structure? I will talk about some joint work with Tim Gowers on this question.

Mon, 02 Dec 2019

15:45 - 16:45
L3

Areas-of-areas on Hall trees generate the shuffle algebra

CRIS SALVI
(University of Oxford)
Abstract

We consider the coordinate-iterated-integral as an algebraic product on the shuffle algebra, called the (right) half-shuffle product. Its anti-symmetrization defines the biproduct  area(.,.), interpretable as the signed-area between two real-valued coordinate paths. We consider specific sets of binary, rooted trees known as Hall sets. These set have a complex combinatorial structure, which can be almost entirely circumvented by introducing the equivalent notion of Lazard sets. Using analytic results from dynamical systems and algebraic results from the theory of Lie algebras, we show that shuffle-polynomials in areas-of-areas on Hall trees generate the shuffle algebra.

Mon, 25 Nov 2019
12:45
L3

Special functions and complex surfaces in high-energy physics

Lorenzo Tancredi
(University of Oxford)
Abstract

I will elaborate on some recent developments on the theory of special functions which are relevant to the calculation of Feynman integrals in perturbative quantum field theory, highlighting the connections with some recent ideas in pure mathematics.

Subscribe to University of Oxford