Tue, 28 Nov 2017

14:00 - 14:30
L3

Tomosynthesis with nonlinear compressed sensing

Raphael Hauser
(University of Oxford)
Abstract

A new generation of low cost 3D tomography systems is based on multiple emitters and sensors that partially convolve measurements. A successful approach to deconvolve the measurements is to use nonlinear compressed sensing models. We discuss such models, as well as algorithms for their solution. 

Wed, 22 Nov 2017

16:00 - 17:00
C4

Warped cones as coarse invariants for actions.

Federico Vigolo
(University of Oxford)
Abstract

Warped cones are infinite metric spaces that are associated with actions by homeomorphisms on metric spaces. In this talk I will try to explain why the coarse geometry of warped cones can be seen as an invariant of the action and what it can tell us about the acting group.

Fri, 01 Dec 2017

10:30 - 11:30
N3.12

Categorical rigidity

Josh Ciappara
(University of Oxford)
Abstract

This talk will introduce the notion of categorical rigidity and the automorphism class group of a category. We will proceed with calculations for several important categories, hopefully illuminating the inverse relationship between the automorphisms of a category and the extent to which the structure of its objects is determined categorically. To conclude, some discussion of what progress there is on currently open/unknown cases.

Tue, 21 Nov 2017

14:00 - 14:30
L5

Compressed Sensing Reconstruction of Dynamic X-ray Imaging

Joseph Field
(University of Oxford)
Abstract

Medical imaging is a key diagnostic tool, and is paramount for disease detection and for patient monitoring during ongoing care. Often, to reduce the amount of radiation that a patient is subjected to, there is a strong incentive to consider image reconstruction from incomplete sets of measurements, and so the imaging process is formulated as a compressed sensing problem.

In this talk, we will focus on compressed sensing for digital tomosynthesis (DTS), in which three-dimensional images are reconstructed from a set of two-dimensional X-ray projections. We first discuss a reconstruction approach for static bodies, with a particular interest in the choice of basis for the image representation. We will then focus on the need for accurate image reconstructions when the body of interest is not stationary, but is undergoing simple motion, discussing two different approaches for tackling this dynamic problem.

Tue, 21 Nov 2017

14:30 - 15:00
L5

The Cascading Haar Wavelet algorithm for computing the Walsh-Hadamard Transform

Andrew Thompson
(University of Oxford)
Abstract

I will describe a novel algorithm for computing the Walsh Hadamard Transform (WHT) which consists entirely of Haar wavelet transforms. The algorithm shares precisely the same serial complexity as the popular divide-and-conquer algorithm for the WHT. There is also a natural way to parallelize the algorithm which appears to have a number of attractive features.

Tue, 28 Nov 2017

12:00 - 13:00
C3

A networks perspective on automation

Maria del Rio Chanona
(University of Oxford)
Abstract

Current technological progress has raised concerns about automation of tasks performed by workers resulting in job losses. Previous studies have used machine learning techniques to compute the automation probability of occupations and thus, studied the impact of automation on employment. However, such studies do not consider second-order effects, for example, an occupation with low automation probability can have a  surplus of labor supply due to similar occupations being automated. In this work, we study such second-order effects of automation using a network approach.  In our network – the Job Space – occupations are nodes and edges link occupations which share a significant amount of work activities. By mapping employment, automation probabilities into the network, and considering the movement of workers, we show that an occupation’s position in the network may be crucial to determining its employment future.

 

Tue, 14 Nov 2017

14:00 - 14:30
L5

An Alternative to the Coarse Solver for the Parareal Algorithm

Federico Danieli
(University of Oxford)
Abstract

Time parallelisation techniques provide an additional direction for the parallelisation of the solution of time-dependent PDEs or of systems of ODEs. In particular, the Parareal algorithm has imposed itself as the canonical choice to achieve parallelisation in time, also because of its simplicity and flexibility. The algorithm works by splitting the time domain in chunks, and iteratively alternating a prediction step (parallel), in which a "fine" solver is employed to achieve a high-accuracy solution within each chunk, to a correction step (serial) where a "coarse" solver is used to quickly propagate the update between the chunks. However, the stability of the method has proven to be highly sensitive to the choice of fine and coarse solver, even more so when applied to chaotic systems or advection-dominated problems.


In this presentation, an alternative formulation of Parareal is discussed. This aims to conduct the update by estimating directly the sensitivity of the solution of the integration with respect to the initial conditions, thus eliminating altogether the necessity of choosing the most apt coarse solver, and potentially boosting its convergence properties.

 

Tue, 14 Nov 2017

14:30 - 15:00
L5

Shape Optimisation with Conformal Mappings

Florian Wechsung
(University of Oxford)
Abstract

The design of shapes that are in some sense optimal is a task faced by engineers in a wide range of disciplines. In shape optimisation one aims to improve a given initial shape by iteratively deforming it - if the shape is represented by a mesh, then this means that the mesh has to deformed. This is a delicate problem as overlapping or highly stretched meshes lead to poor accuracy of numerical methods.

In the presented work we consider a novel mesh deformation method motivated by the Riemannian mapping theorem and based on conformal mappings.

Wed, 08 Nov 2017

16:00 - 17:00
C5

When are two right angled Artin groups quasi-isometric?

Alexander Margolis
(University of Oxford)
Abstract

I will give a survey of known results about when two RAAGs are quasi-isometric, and will then describe a visual graph of groups decomposition of a RAAG (its JSJ tree of cylinders) that can often be used to determine whether or not two RAAGs are quasi-isometric.

Thu, 23 Nov 2017

16:30 - 17:30
L1

Bendotaxis of Wetting and Non-wetting drops

Alexander Bradley
(University of Oxford)
Abstract

It is thought that the hairy legs of water walking arthropods are able to remain clean and dry because the flexibility of the hairs spontaneously moves drops off the hairs. We present a mathematical model of this bending-induced motion, or bendotaxis, and study how it performs for wetting and non-wetting drops. Crucially, we show that both wetting and non-wetting droplets move in the same direction (using physical arguments and numerical solutions). This suggests that a surface covered in elastic filaments (such as the hairy leg of insects) may be able to universally self-clean. To quantify the efficiency of this effect, we explore the conditions under which drops leave the structure by ‘spreading’ rather than translating and also how long it takes to do so.

Subscribe to University of Oxford