Mon, 15 May 2017

14:15 - 15:15
L3

Renormalisation of SPDE's

ILYA CHEVYREV
(University of Oxford)
Abstract

Recent work in regularity structures has provided a robust solution theory for a wide class of singular SPDEs. While much progress has been made on understanding the analytic and algebraic aspects of renormalisation of the driving signal, the action of the renormalisation group on the equation still needed to be performed by hand. In this talk, we aim to give a systematic description of the renormalisation procedure directly on the level of the PDE, which allows for explicit computation of the form of the renormalised equation. Joint work with Yvain Bruned, Ajay Chandra, and Martin Hairer.

 

Thu, 15 Jun 2017

16:00 - 17:00
L3

Asymptotic analysis of a two-front Stefan problem; Asymptotic analysis of a silicon furnace model

Ferran Brosa Planella, Ben Sloman
(University of Oxford)
Abstract

Understanding the evolution of a solidification front is important in the study of solidification processes. Mathematically, self-similar solutions exist to the Stefan problem when the liquid domain is assumed semi-infinite, and such solutions have been extensively studied in the literature. However, in the case where the liquid region is finite and sufficiently small, such of solutions no longer hold, as in this case two solidification fronts will move toward each other and interact. We present an asymptotic analysis for the two-front Stefan problem with a small amount of constitutional supercooling and compare the asymptotic results with numerical simulations. We finally discuss ongoing work on the same problem near the time when the two fronts are close to colliding.
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Silicon is produced from quartz rock in electrode-heated furnaces by using carbon as a reduction agent. We present a model of the heat and mass transfer in an experimental pilot furnace and perform an asymptotic analysis of this model. First, by prescribing a steady state temperature profile in the furnace we explore the leading order reactions in different spatial regions. We next utilise the dominant behaviour when temperature is prescribed to reduce the full model to two coupled partial differential equations for the time-variable temperature profile within the furnace and the concentration of solid quartz. These equations account for diffusion, an endothermic reaction, and the external heating input to the system. A moving boundary is found and the behaviour on either side of this boundary explored in the asymptotic limit of small diffusion. We note how the simplifications derived may be useful for industrial furnace operation.

Thu, 11 May 2017

16:00 - 17:00
L3

On Human Consciousness

Peter Grindrod
(University of Oxford)
Abstract

What can maths tell us about this topic? Do mathematicians even have a seat at the table, and should we? What do we know about directed networks and dynamical systems that can contribute to this?

We consider the implications of the mathematical modelling and analysis of neurone-to-neurone dynamical complex networks. We explain how the dynamical behaviour of relatively small scale strongly connected networks lead naturally to non-binary information processing and thus to multiple hypothesis decision making, even at the very lowest level of the brain’s architecture. This all looks a like a a loose  coupled array of  k-dimensional clocks. There are lots of challenges for maths here. We build on these ideas to address the "hard problem" of consciousness - which other disciplines say is beyond any mathematical explanation for ever! 

We discuss how a proposed “dual hierarchy model”, made up from both externally perceived, physical, elements of increasing complexity, and internally experienced, mental elements (which we argue are equivalent to feelings), may support a leaning and evolving consciousness. We introduce the idea that a human brain ought to be able to re-conjure subjective mental feelings at will. An immediate consequence of this model  is that finite human brains must always be learning and forgetting and that any possible subjective internal feeling that might be fully idealised only with a countable infinity of facets, could never be learned completely a priori by zombies or automata: it may be experienced more and more fully by an evolving human brain (yet never in totality, not even in a lifetime). 

Thu, 04 May 2017

16:00 - 17:00
L3

Localized Frequency Synchrony in Phase Oscillator Networks: Emergence and Dynamics

Christian Bick
(University of Oxford)
Abstract

Networks of interacting oscillators give rise to collective dynamics such as localized frequency synchrony. In networks of neuronal oscillators, for example, the location of frequency synchrony could encode information. We discuss some recent persistence results for certain dynamically invariant sets called weak chimeras, which show localized frequency synchrony of oscillators. We then explore how the network structure and interaction allows for dynamic switching of the spatial location of frequency synchrony: these dynamics are induced by stable heteroclinic connections between weak chimeras. Part of this work is joined with Peter Ashwin (Exeter).

Thu, 11 May 2017

17:00 - 18:15
L1

The Sound of Symmetry and the Symmetry of Sound - Marcus du Sautoy

Marcus du Sautoy
(University of Oxford)
Abstract

Symmetry has played a critical role both for composers and in the creation of musical instruments. From Bach’s Goldberg Variations to Schoenberg’s Twelve-tone rows, composers have exploited symmetry to create variations on a theme. But symmetry is also embedded in the very way instruments make sound. The lecture will culminate in a reconstruction of nineteenth-century scientist Ernst Chladni's exhibition that famously toured the courts of Europe to reveal extraordinary symmetrical shapes in the vibrations of a metal plate.

The lecture will be preceded by a demonstration of the Chladni plates with the audience encouraged to participate. Each of the 16 plates will have their own dials to explore the changing input and can accommodate 16 players at a time. Participants will be able to explore how these shapes might fit together into interesting tessellations of the plane. The ultimate idea is to create an aural dynamic version of the walls in the Alhambra.

The lecture will start at 5pm, but the demonstration will be available from 2.30pm.

Please email @email to register

 

 

 

Wed, 08 Mar 2017

11:00 - 12:30
N3.12

Varieties of groups

Giles Gardem
(University of Oxford)
Abstract

A variety of groups is an equationally defined class of groups, namely the class of groups in which each of a set of "laws" (or "identical relations") holds. Examples include the abelian groups (defined by the law $xy = yx$), the groups of exponent dividing $d$ (defined by the law $x^d$), the nilpotent groups of class at most some fixed integer, and the solvable groups of derived length at most some fixed integer. This talk will give an introduction to varieties of groups, and then conclude with recent work on determining for certain varieties whether, for fixed coprime $m$ and $n$, a group $G$ is in the variety if and only if the power subgroups $G^m$ and $G^n$ (generated by the $m$-th and $n$-th powers) are in the variety.

Wed, 01 Mar 2017

11:00 - 12:30
N3.12

Kneser's Conjecture on Free Products

Gareth Wilkes
(University of Oxford)
Abstract

In this talk I will describe another strong link between the behaviour of a 3-manifold and the behaviour of its fundamental group- specifically the theorem that the group splits as a free product if and only if the 3-manifold may be divided into two parts using a 2-sphere inducing this splitting. This theorem is for some reason known as Kneser's conjecture despite having been proved half a century ago by Stallings.

Wed, 26 Apr 2017
16:00
C1

The Morse boundary

David Hume
(University of Oxford)
Abstract

We give a construction of a boundary (the Morse boundary) which can be assigned to any proper geodesic metric space and which is rigid, in the sense that a quasi-isometry of spaces induces a homeomorphism of boundaries. To obtain a more workable invariant than the homeomorphism type, I will introduce the metric Morse boundary and discuss notions of capacity and conformal dimensions of the metric Morse boundary. I will then demonstrate that these dimensions give useful invariants of relatively hyperbolic and mapping class groups. This is joint work with Matthew Cordes (Technion).

Subscribe to University of Oxford