Tue, 17 Nov 2015
14:30
L6

Large deviations in random graphs

Yufei Zhao
(University of Oxford)
Abstract

What is the probability that the number of triangles in an Erdős–Rényi random graph exceeds its mean by a constant factor? In this talk, I will discuss some recent progress on this problem.

Already the order in the exponent of the tail probability was a long standing open problem until several years ago when it was solved by DeMarco and Kahn, and independently by Chatterjee. We now wish to determine the exponential rate of the tail probability. Thanks for the works of Chatterjee--Varadhan (dense setting) and Chatterjee--Dembo (sparse setting), this large deviations problem reduces to a natural variational problem. We solve this variational problem asymptotically, thereby determining the large deviation rate, which is valid at least for p > 1/n^c for some c > 0.

Based on joint work with Bhaswar Bhattacharya, Shirshendu Ganguly, and Eyal Lubetzky.

Tue, 03 Nov 2015

14:00 - 14:30
L5

Collocation-based hybrid numerical-asymptotic methods for high frequency wave scattering

David Hewett
(University of Oxford)
Abstract

Wave scattering problems arise in numerous applications in acoustics, electromagnetics and linear elasticity. In the boundary element method (BEM) one reformulates the scattering problem as an integral equation on the scatterer boundary, e.g. using Green’s identities, and then seeks an approximate solution of the boundary integral equation (BIE) from some finite-dimensional approximation space. The conventional choice is a space of piecewise polynomials; however, in the “high frequency” regime when the wavelength is small compared to the size of the scatterer, it is computationally expensive to resolve the highly oscillatory wave solution in this way. The hybrid numerical-asymptotic (HNA) approach aims to reduce the computational cost by enriching the BEM approximation space with oscillatory functions, carefully chosen to capture the high frequency asymptotic solution behaviour. To date, the HNA methodology has been implemented almost exclusively in a Galerkin variational framework. This has many attractive features, not least the possibility of proving rigorous convergence results, but has the disadvantage of requiring numerical evaluation of high dimensional oscillatory integrals. In this talk I will present the results of some investigations carried out with my MSc student Emile Parolin into collocation-based implementations, which involve lower-dimensional integrals, but appear harder to analyse in terms of convergence and stability.

Thu, 05 Nov 2015

12:00 - 13:00
L6

Ancient Solutions to Navier-Stokes Equations in Half Space

Tobias Barker
(University of Oxford)
Abstract

The relationship between the so-called ancient (backwards) solutions to the Navier-Stokes equations in the space or in a half space and the global well-posedness of initial boundary value problems for these equations will be explained. If time permits I will sketch details of an equivalence theorem and a proof of smoothness properties of mild bounded ancient solutions in the half space, which is a joint work with Gregory Seregin

Thu, 26 Nov 2015

12:00 - 13:00
L6

Non-orientable line defects in the Landau-de Gennes theory of nematic liquid crystals

Giacomo Canevari
(University of Oxford)
Abstract
Nematic liquid crystals are composed by rod-shaped molecules with long-range orientation order. These materials admit topological defect lines, some of which are associated with non-orientable configurations. In this talk, we consider the Landau-de Gennes variational theory of nematics. We study the asymptotic behaviour of minimizers as the elastic constant tends to zero. We assume that the energy of minimizers is of the same order as the logarithm of the elastic constant. This happens, for instance, if the boundary datum has finitely many singular points. We prove convergence to a locally harmonic map with singularities of dimension one (non-orientable line defects) and, possibly, zero (point defects).
Thu, 12 Nov 2015

12:00 - 13:00
L6

Energy decay in a 1D coupled heat-wave system

David Seifert
(University of Oxford)
Abstract

We study a simple one-dimensional coupled heat wave system, obtaining a sharp estimate for the rate of energy decay of classical solutions. Our approach is based on the asymptotic theory of $C_0$-semigroups and in particular on a result due to Borichev and Tomilov (2010), which reduces the problem of estimating the rate of energy decay to finding a growth bound for the resolvent of the semigroup generator. This technique not only leads to an optimal result, it is also simpler than the methods used by other authors in similar situations and moreover extends to problems on higher-dimensional domains. Joint work with C.J.K. Batty (Oxford) and L. Paunonen (Tampere).

Thu, 03 Dec 2015

16:00 - 17:00
L5

Galois theory of periods and applications

Francis Brown
(University of Oxford)
Abstract

A period is a certain type of number obtained by integrating algebraic differential forms over algebraic domains. Examples include pi, algebraic numbers, values of the Riemann zeta function at integers, and other classical constants.
Difficult transcendence conjectures due to Grothendieck suggest that there should be a Galois theory of periods.
I will explain these notions in very introductory terms and show how to set up such a Galois theory in certain situations.
I will then discuss some applications, in particular to Kim's method for bounding $S$-integral solutions to the equation $u+v=1$, and possibly to high-energy physics.

Tue, 16 Jun 2015

14:00 - 14:30
L3

Best approximations in Chebfun and applications to digital filters

Mohsin Javed
(University of Oxford)
Abstract

In this talk I will give an overview of the algorithms used by Chebfun to numerically compute polynomial and trigonometric minimax approximations of continuous functions. I'll also present Chebfun's capabilities to compute best approximations on compact subsets of an interval and how these methods can be used to design digital filters.

Tue, 09 Jun 2015

14:30 - 15:00
L5

Krylov methods for operators

Jared Aurentz
(University of Oxford)
Abstract
In this talk we will explore the convergence of Krylov methods when used to solve $Lu = f$ where $L$ is an unbounded linear operator.  We will show that for certain problems, methods like Conjugate Gradients and GMRES still converge even though the spectrum of $L$ is unbounded. A theoretical justification for this behavior is given in terms of polynomial approximation on unbounded domains.    
Tue, 02 Jun 2015

14:30 - 15:00
L5

Continuum Modelling and Numerical Approaches for Diblock Copolymers

Quentin Parsons
(University of Oxford)
Abstract

We review a class of systems of non-linear PDEs, derived from the Cahn--Hilliard and Ohta--Kawasaki functionals, that describe the energy evolution of diblock copolymers. These are long chain molecules that can self assemble into repeating patterns as they cool. We are particularly interested in finite element numerical methods that approximate these PDEs in the two-phase (in which we model the polymer only) and three-phase (in which we imagine the polymer surrounded by, and interacting with, a void) cases.

We present a brief derivation of the underlying models, review a class of numerical methods to approximate them, and showcase some early results from our codes.

Tue, 02 Jun 2015

14:00 - 14:30
L5

Image Reconstruction from X-Ray Scanning

Maria Klodt
(University of Oxford)
Abstract

The talk will present ongoing work on medical image reconstruction from x-ray scanners. A suitable method for reconstruction of these undersampled systems is compressed sensing. The presentation will show respective reconstruction methods and their analysis. Furthermore, work in progress about extensions of the standard approach will be shown.

Subscribe to University of Oxford