Varieties of groups
Abstract
A variety of groups is an equationally defined class of groups, namely the class of groups in which each of a set of "laws" (or "identical relations") holds. Examples include the abelian groups (defined by the law $xy = yx$), the groups of exponent dividing $d$ (defined by the law $x^d$), the nilpotent groups of class at most some fixed integer, and the solvable groups of derived length at most some fixed integer. This talk will give an introduction to varieties of groups, and then conclude with recent work on determining for certain varieties whether, for fixed coprime $m$ and $n$, a group $G$ is in the variety if and only if the power subgroups $G^m$ and $G^n$ (generated by the $m$-th and $n$-th powers) are in the variety.
Kneser's Conjecture on Free Products
Abstract
In this talk I will describe another strong link between the behaviour of a 3-manifold and the behaviour of its fundamental group- specifically the theorem that the group splits as a free product if and only if the 3-manifold may be divided into two parts using a 2-sphere inducing this splitting. This theorem is for some reason known as Kneser's conjecture despite having been proved half a century ago by Stallings.
Symmetry-breaking and nonlocal reaction-diffusion mechanisms in bioactive porous media, or "How not to model porous media"
16:00
The Morse boundary
Abstract
We give a construction of a boundary (the Morse boundary) which can be assigned to any proper geodesic metric space and which is rigid, in the sense that a quasi-isometry of spaces induces a homeomorphism of boundaries. To obtain a more workable invariant than the homeomorphism type, I will introduce the metric Morse boundary and discuss notions of capacity and conformal dimensions of the metric Morse boundary. I will then demonstrate that these dimensions give useful invariants of relatively hyperbolic and mapping class groups. This is joint work with Matthew Cordes (Technion).
16:00
Asymptotic Dimension and Coarse Cohomology
Abstract
Asymptotic dimension is a large-scale analogue of Lebesgue covering dimension. I will give a gentle introduction to asymptotic dimension, prove some basic propeties and give some applications to group theory. I will then define coarse homology and explain how when defined, virtual cohomological dimension gives a lower bound on asymptotic dimension.
12:00
On the weak rigidity of isometric immersions of Riemannian and semi-Riemannian manifolds
Abstract
Consider a family of uniformly bounded $W^{2,p}$ isometric immersions of an $n$-dimensional (semi-) Riemannian manifold into (resp., semi-) Euclidean spaces. Are the weak limits still isometric immersions?
We answer the question in the affirmative for $p>n$ in the Riemannian case, by exploiting the div-curl structure of the Gauss-Codazzi-Ricci equations, which describe the curvature flatness of the isometric immersions. Along the way a generalised div-curl lemma in Banach spaces is established. Moreover, the endpoint case $p=n=2$ is settled.
In the semi-Riemannian case we reduce the problem to the weak continuity of H. Cartan's structural equations in $W^{1,p}_{\rm loc}$, which is proved by a generalised compensated compactness theorem relating the weak continuity of quadratic forms to the principal symbols of differential constraints. Again for $p>n$ we obtain the weak rigidity. The case of degenerate hypersurfaces are also discussed, as well as connections to PDEs in fluid dynamics.
Geometric properties related to Beilinson-Bernstein localisation
Abstract
In recent years, Ardakov and Wadsley have been interested in extending the classical theory of Beilinson-Bernstein localisation to different contexts. The classical proof relies on fundamental geometric properties of the dual nilcone of a semisimple Lie algebra; in particular, finding a nice desingularisation of the nilcone and demonstrating that it is normal. I will attempt to explain the relationship between these properties and the proof, and discuss some areas of my own work, which focuses on proving analogues of these results in the case where the characteristic of the ground field K is bad.
On certain hyperplane arrangements and nilpotent orbits of complex simple Lie algebras
Abstract
In this talk, I wish to address the problem of evaluating an integral on an n-dimensional complex vector space whose n-form of integration has poles along a union of (affine) hyperplanes, following the work of Heckman and Opdam. Such situation arise often in the harmonic analysis of a reductive group and when that is the case, the singular hyperplane arrangement in question is dictated by the root system of the group. I will then try to explain how we can relate the intersection lattice of the hyperplane arrangement with nilpotent orbits of a complex Lie algebra related to the root system in question.