Wed, 04 Nov 2009

11:30 - 12:30
ChCh, Tom Gate, Room 2

The Quest for $\mathbb{F}_\mathrm{un}$

Tobias Barthel
(University of Oxford)
Abstract

We will present different ideas leading to and evolving around geometry over the field with one element. After a brief summary of the so-called numbers-functions correspondence we will discuss some aspects of Weil's proof of the Riemann hypothesis for function fields. We will see then how lambda geometry can be thought of as a model for geometry over $\mathbb{F}_\mathrm{un}$ and what some familiar objects should look like there. If time permits, we will

explain a link with stable homotopy theory.

Fri, 08 May 2009

16:30 - 17:00
DH 3rd floor SR

Analysis of asymmetric stable droplets in a fish patterning model

Thomas Woolley
(University of Oxford)
Abstract
Soliton like structures called “stable droplets” are found to exist within a paradigm reaction
diffusion model which can be used to describe the patterning in a number of fish species. It is
straightforward to analyse this phenomenon in the case when two non-zero stable steady states are
symmetric, however the asymmetric case is more challenging. We use a recently developed
perturbation technique to investigate the weakly asymmetric case.
Wed, 20 May 2009

11:30 - 12:30
ChCh, Tom Gate, Room 2

The abc conjecture and related topics

David Craven
(University of Oxford)
Abstract

We begin by proving the abc theorem for polynomial rings and looking at a couple of its consequences. We then move on to the abc conjecture and its equivalence with the generalized Szpiro conjecture, via Frey polynomials. We look at a couple of consequences of the abc conjecture, and finally consider function fields, where we introduce the abc theorem in that case.

Wed, 06 May 2009

11:30 - 12:30
ChCh, Tom Gate, Room 2

Derived Koszul duality

Ben Davison
(University of Oxford)
Subscribe to University of Oxford