Non-conforming and conforming methods for minimization problems exhibiting the Lavrentiev phenomenon
Abstract
I will begin by talking briefly about the Lavrentiev phenomenon and its implications for computations. In short, if a minimization problem exhibits a Lavrentiev gap then `naive' numerical methods cannot be used to solve it. In the past, several regularization techniques have been used to overcome this difficulty. I will briefly mention them and discuss their strengths and weaknesses.
The main part of the talk will be concerned with a class of convex problems, and I will show that for this class, relatively simple numerical methods, namely (i) the Crouzeix--Raviart FEM and (ii) the P2-FEM with under-integration, can successfully overcome the Lavrentiev gap.
Moduli problems in algebraic geometry - an introduction through Hilbert and Quot schemes
Abstract
Hilbert schemes classify subschemes of a given projective variety / scheme. They are special cases of Quot schemes which are moduli spaces for quotients of a fixed coherent sheaf. Hilb and Quot are among the first examples of moduli spaces in algebraic geometry, and they are crucial for solving many other moduli problems. I will try to give you a flavour of the subject by sketching the construction of Hilb and Quot and by discussing the role they play in applications, in particular moduli spaces of stable curves and moduli spaces of stable sheaves.
The Hopf invariant 1 problem
Abstract
For continuous maps $f: S^{2n-1} \to S^n$ one can define an integer-valued invariant, the so-called Hopf invariant. The problem of determining for which $n$ there are maps having Hopf invariant one can be related to many problems in topology and geometry, such as which spheres are parallelisable, which spheres are H-spaces (that is, have a product), and what are the division algebras over $\mathbb{R}$.
The best way to solve this problem is using complex K-theory and Adams operations. I will show how all the above problems are related, give an introduction to complex K-theory and it's operations, and show how to use it to solve this problem.
Moduli of Equivariant and Invariant Sheaves on Toric Varieties
Abstract
Extending work of Klyachko and Perling, we develop a combinatorial description of pure equivariant sheaves on an arbitrary nonsingular toric
variety X. This combinatorial description can be used to construct moduli spaces of stable equivariant sheaves on X using Geometric Invariant Theory (analogous to techniques used in case of equivariant vector bundles on X by Payne and Perling). We study how the moduli spaces of stable equivariant sheaves on X can be used to explicitly compute the fixed point locus of the moduli space of all stable sheaves on X, i.e. the subscheme of invariant stable sheaves on X.
The Nielsen realisation problem and K3 surfaces
Abstract
The Nielsen realisation problem asks when a collection of diffeomorphisms, which form a group up to isotopy, is isotopic to a collection of diffeomorphisms which form a group on the nose. For surfaces this problem is well-studied, I'll talk about this problem in the context of K3 surfaces.