Mon, 24 Oct 2005
17:00
L1

Gradient flows as a selection criterion for equilibria of non-convex
material models.

Christoph Ortner
(University of Oxford)
Abstract

For atomistic (and related) material models, global minimization

gives the wrong qualitative behaviour; a theory of equilibrium

solutions needs to be defined in different terms. In this talk, a

process based on gradient flow evolutions is presented, to describe

local minimization for simple atomistic models based on the Lennard-

Jones potential. As an application, it is shown that an atomistic

gradient flow evolution converges to a gradient flow of a continuum

energy, as the spacing between the atoms tends to zero. In addition,

the convergence of the resulting equilibria is investigated, in the

case of both elastic deformation and fracture.

Subscribe to University of Oxford