Mon, 19 May 2025
15:30
L5

Stable equivalence relations of 4-manifolds

Daniel Kasprowski
(University of Southampton)
Abstract

Kreck’s modified surgery gives an approach to classify 2n-manifolds up to stable diffeomorphism, i.e., up to a connected sum with copies of $S^n \times  S^n$. In dimension 4, we use a combination of modified and classical surgery to compare the stable diffeomorphism classification with other stable equivalence relations. Most importantly, we consider homotopy equivalence up to connected sum with copies of $S^2 \times  S^2$. This talk is based on joint work with John Nicholson and Simona Veselá.

Fri, 16 May 2025
13:00
L6

Certifying robustness via topological representations

Andrea Guidolin
(University of Southampton)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract
Deep learning models are known to be vulnerable to small malicious perturbations producing so-called adversarial examples. Vulnerability to adversarial examples is of particular concern in the case of models developed to operate in security- and safety-critical situations. As a consequence, the study of robustness properties of deep learning models has recently attracted significant attention.

In this talk we discuss how the stability results for the invariants of Topological Data Analysis can be exploited to design machine learning models with robustness guarantees. We propose a neural network architecture that can learn discriminative geometric representations of data from persistence diagrams. The learned representations enjoy Lipschitz stability with a controllable Lipschitz constant. In adversarial learning, this stability can be used to certify robustness for samples in a dataset, as we demonstrate on synthetic data.
Wed, 05 Feb 2025
16:00
L6

Semi-regular tilings and the d-chromatic number of the hyperbolic plane

Luke Waite
(University of Southampton)
Abstract

Originally posed in the 1950s, the Hadwiger-Nelson problem interrogates the ‘chromatic number of the plane’ via an infinite unit-distance graph. This question remains open today, known only to be 5,6, or 7. We may ask the same question of the hyperbolic plane; there the lack of homogeneous dilations leads to unique behaviour for each length scale d. This variance leads to other questions: is the d-chromatic number finite for all d>0? How does the d-chromatic number behave as d increases/decreases? In this talk, I will provide a summary of existing methods and results, before discussing improved bounds through the consideration of semi-regular tilings of the hyperbolic plane.

Fri, 08 Nov 2024
15:00
L5

Topological Analysis of Bone Microstructure, Directed Persistent Homology and the Persistent Laplacian for Data Science

Ruben Sanchez-Garcia
(University of Southampton)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

In this talk, I will give an overview of recent joint work on Topological Data Analysis (TDA). The first one is an application of TDA to quantify porosity in pathological bone tissue. The second is an extension of persistent homology to directed simplicial complexes. Lastly, we present an evaluation of the persistent Laplacian in machine learning tasks. This is joint work with Ysanne Pritchard, Aikta Sharma, Claire Clarkin, Helen Ogden, and Sumeet Mahajan; David Mendez; and Tom Davies and Zhengchao Wang, respectively.
 

Thu, 23 May 2024

14:00 - 15:00
Lecture Room 3

The bilevel optimization renaissance through machine learning: lessons and challenges

Alain Zemkoho
(University of Southampton)
Abstract

Bilevel optimization has been part of machine learning for over 4 decades now, although perhaps not always in an obvious way. The interconnection between the two topics started appearing more clearly in publications since about 20 years now, and in the last 10 years, the number of machine learning applications of bilevel optimization has literally exploded. This rise of bilevel optimization in machine learning has been highly positive, as it has come with many innovations in the theoretical and numerical perspectives in understanding and solving the problem, especially with the rebirth of the implicit function approach, which seemed to have been abandoned at some point.
Overall, machine learning has set the bar very high for the whole field of bilevel optimization with regards to the development of numerical methods and the associated convergence analysis theory, as well as the introduction of efficient tools to speed up components such as derivative calculations among other things. However, it remains unclear how the techniques from the machine learning—based bilevel optimization literature can be extended to other applications of bilevel programming. 
For instance, many machine learning loss functions and the special problem structures enable the fulfillment of some qualification conditions that will fail for multiple other applications of bilevel optimization. In this talk, we will provide an overview of machine learning applications of bilevel optimization while giving a flavour of corresponding solution algorithms and their limitations. 
Furthermore, we will discuss possible paths for algorithms that can tackle more complicated machine learning applications of bilevel optimization, while also highlighting lessons that can be learned for more general bilevel programs.

Thu, 30 Nov 2023

16:00 - 17:00
C2

Noncommutative geometry meets harmonic analysis on reductive symmetric spaces

Shintaro Nishikawa
(University of Southampton)
Abstract

A homogeneous space G/H is called a reductive symmetric space if G is a (real) reductive Lie group, and H is a symmetric subgroup of G, meaning that H is the subgroup fixed by some involution on G. The representation theory on reductive symmetric spaces was studied in depth in the 1990s by Erik van den Ban, Patrick Delorme, and Henrik Schlichtkrull, among many others. In particular, they obtained the Plancherel formula for the L^2 space of G/H. An important aspect is that this generalizes the group case, obtained by Harish-Chandra, which corresponds to the case when G = G' x G' and H is the diagonal subgroup.

In our collaborative efforts with A. Afgoustidis, N. Higson, P. Hochs, Y. Song, we are studying this subject from the perspective of noncommutative geometry. I will describe this exciting new development, with a particular emphasis on describing what is new and how this is different from the traditional group case, i.e. the reduced group C*-algebra of G.

Wed, 02 Nov 2022
16:00
L4

Separability of products in relatively hyperbolic groups

Lawk Mineh
(University of Southampton)
Abstract

Separability is an algebraic property enjoyed by certain subsets of groups. In the world of non-positively curved groups, it has a not-too-well-understood link to geometric properties such as convexity. We explore this connection in the setting of relatively hyperbolic groups and discuss a recent joint work in this area involving products of quasiconvex subgroups.

Fri, 20 May 2022

14:00 - 15:00
L4

Multiscale Image Based Modelling of Plant-Soil Interaction

Tiina Roose
(University of Southampton)
Abstract

We rely on soil to support the crops on which we depend. Less obviously we also rely on soil for a host of 'free services' from which we benefit. For example, soil buffers the hydrological system greatly reducing the risk of flooding after heavy rain; soil contains very large quantities of carbon, which would otherwise be released into the atmosphere where it would contribute to climate change. Given its importance it is not surprising that soil, especially its interaction with plant roots, has been a focus of many researchers. However the complex and opaque nature of soil has always made it a difficult medium to study. 

In this talk I will show how we can build a state of the art image based model of the physical and chemical properties of soil and soil-root interactions, i.e., a quantitative, model of the rhizosphere based on fundamental scientific laws.
This will be realised by a combination of innovative, data rich fusion of structural and chemical imaging methods, integration of experimental efforts to both support and challenge modelling capabilities at the scale of underpinning bio-physical processes, and application of mathematically sound homogenisation/scale-up techniques to translate knowledge from rhizosphere to field scale. The specific science questions I will address with these techniques are: (1) how does the soil around the root, the rhizosphere, function and influence the soil ecosystems at multiple scales, (2) what is the role of root- soil interface micro morphology on plant nutrient uptake, (3) what is the effect of plant exuded mucilage on the soil morphology, mechanics and resulting field and ecosystem scale soil function and (4) how to translate this knowledge from the single root scale to root system, field and ecosystem scale in order to predict how the climate change, different soil management strategies and plant breeding will influence the soil fertility. 

Thu, 24 Feb 2022

16:00 - 17:00
L4

Euler characteristics and epsilon constants of curves over finite fields - some wild stuff

Bernhard Koeck
(University of Southampton)
Abstract

Let X be a smooth projective curve over a finite field equipped with an action of a finite group G. I’ll first briefly introduce the corresponding Artin L-function and a certain equivariant Euler characteristic. The main result will be a precise relation between the epsilon constants appearing in the functional equations of Artin L-functions and that Euler characteristic if the projection X  X/G is at most weakly ramified. This generalises a theorem of Chinburg for the tamely ramified case. I’ll end with some speculations in the arbitrarily wildly ramified case. This is joint work with Helena Fischbacher-Weitz and with Adriano Marmora.

Mon, 24 Jan 2022

14:00 - 15:00
Virtual

Exploiting low dimensional data structures in volumetric X-ray imaging

Thomas Blumensath
(University of Southampton)
Abstract

Volumetric X-ray tomography is used in many areas, including applications in medical imaging, many fields of scientific investigation as well as several industrial settings. Yet complex X-ray physics and the significant size of individual x-ray tomography data-sets poses a range of data-science challenges from the development of efficient computational methods, the modelling of complex non-linear relationships, the effective analysis of large volumetric images as well as the inversion of several ill conditioned inverse problems, all of which prevent the application of these techniques in many advanced imaging settings of interest. This talk will highlight several applications were specific data-science issues arise and showcase a range of approaches developed recently at the University of Southampton to overcome many of these obstacles.

Subscribe to University of Southampton