Tue, 10 Oct 2023

14:00 - 15:00
L5

Residual finiteness growth functions of surface groups with respect to characteristic quotients

Mark Pengitore
(University of Virginia)
Abstract

Residual finiteness growth functions of groups have attracted much interest in recent years. These are functions that roughly measure the complexity of the finite quotients needed to separate particular group elements from the identity in terms of word length. In this talk, we study the growth rate of these functions adapted to finite characteristic quotients. One potential application of this result is towards linearity of the mapping class group.

Tue, 22 Nov 2022
16:00
C1

A quantization of coarse structures and uniform Roe algebras

David Sherman
(University of Virginia)
Abstract

A coarse structure is a way of talking about "large-scale" properties.  It is encoded in a family of relations that often, but not always, come from a metric.  A coarse structure naturally gives rise to Hilbert space operators that in turn generate a so-called uniform Roe algebra.

In work with Bruno Braga and Joe Eisner, we use ideas of Weaver to construct "quantum" coarse structures and uniform Roe algebras in which the underlying set is replaced with an arbitrary represented von Neumann algebra.  The general theory immediately applies to quantum metrics (suitably defined), but it is much richer.  We explain another source based on measure instead of metric, leading to the new, large, and easy-to-understand class of support expansion C*-algebras.

I will present the big picture: where uniform Roe algebras come from, how Weaver's framework facilitates our definitions.  I will focus on a few illustrative examples and will not presume familiarity with coarse structures or von Neumann algebras.

Mon, 25 Nov 2019

17:00 - 18:00
L4

Crossing the Pond: European Mathematicians in 1920s America

Karen Hunger Parshall
(University of Virginia)
Abstract

American mathematics was experiencing growing pains in the 1920s. It had looked to Europe at least since the 1890s when many Americans had gone abroad to pursue their advanced mathematical studies.  It was anxious to assert itself on the international—that is, at least at this moment in time, European—mathematical scene. How, though, could the Americans change the European perception from one of apprentice/master to one of mathematical equals? How could Europe, especially Germany but to a lesser extent France, Italy, England, and elsewhere, come fully to sense the development of the mathematical United States?  If such changes could be effected at all, they would likely involve American and European mathematicians in active dialogue, working shoulder to shoulder in Europe and in the United States, and publishing side by side in journals on both sides of the Atlantic. This talk will explore one side of this “equation”: European mathematicians and their experiences in the United States in the 1920s.

Wed, 17 Jun 2009

11:30 - 12:30
ChCh, Tom Gate, Room 2

Introduction to Golod-Shafarevich groups

Mikhail Ershov
(University of Virginia)
Abstract

I will describe in detail the first construction of infinite, finitely generated torsion groups due to Golod in early 60s --

these groups are special cases of the so-called Golod-Shafarevich groups. If time allows, I will discuss some related constructions and open problems.

Tue, 16 Jun 2009

17:00 - 18:00
L2

Kazhdan quotients of Golod-Shafarevich groups

Mikhail Ershov
(University of Virginia)
Abstract

Informally speaking, a finitely generated group G is said to be {\it Golod-Shafarevich} (with respect to a prime p) if it has a presentation with a ``small'' set of relators, where relators are counted with different weights depending on how deep they lie in the Zassenhaus p-filtration. Golod-Shafarevich groups are known to behave like (non-abelian) free groups in many ways: for instance, every Golod-Shafarevich group G has an infinite torsion quotient, and the pro-p completion of G contains a non-abelian free pro-p group. In this talk I will extend the list of known ``largeness'' properties of Golod-Shafarevich groups by showing that they always have an infinite quotient with Kazhdan's property (T). An important consequence of this result is a positive answer to a well-known question on non-amenability of Golod-Shafarevich groups.

Subscribe to University of Virginia