Mon, 15 Feb 2010
15:45
Eagle House

THE BEHAVIOR OF THE CURRENT FLUCTUATION FIELD IN WEAKLY ASYMMETRIC EXCLUSION

Sigurd Assing
(University of Warwick)
Abstract

We consider the time average of the (renormalized) current fluctuation field in one-dimensional weakly asymmetric simple exclusion.

The asymmetry is chosen to be weak enough such that the density fluctuation field still converges in law with respect to diffusive scaling. Remark that the density fluctuation field would evolve on a slower time scale if the asymmetry is too strong and that then the current fluctuations would have something to do with the Tracy-Widom distribution. However, the asymmetry is also chosen to be strong enough such that the density fluctuation field does not converge in law to an infinite-dimensional Ornstein-Uhlenbeck process, that is something non-trivial is happening.

We will, at first, motivate why studying the time average of the current fluctuation field helps to understand the structure of this non-trivial scaling limit of the density fluctuation field and, second, show how one can replace the current fluctuation field by a certain functional of the density fluctuation field under the time average. The latter result provides further evidence for the common belief that the scaling limit of the density fluctuation field approximates the solution of a Burgers-type equation

Mon, 15 Jun 2009
14:15
Oxford-Man Institute

Diffusion Limits of MCMC Methods

Professor Andrew Stuart
(University of Warwick)
Abstract

Diffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying efficiency.

In particular they facilitate precise estimates of the number of steps required to explore the target measure, in stationarity, as a function of the dimension of the state space. However, to date such results have only been proved for target measures with a product structure, severely limiting their applicability to real applications. The purpose of this talk is to desribe a research program aimed at identifying diffusion limits for a class of naturally occuring problems, found by finite dimensional approximation of measures on a Hilbert space which are absolutely continuous with respect to a Gaussian reference measure.

The diffusion limit to a Hilbert space valued SDE (or SPDE) is proved.

Joint work with Natesh Pillai (Warwick) and Jonathan Mattingly (Duke)

Thu, 30 Apr 2009

14:00 - 15:00
Comlab

Approximation of Inverse Problems

Prof. Andrew Stuart
(University of Warwick)
Abstract

Inverse problems are often ill-posed, with solutions that depend sensitively on data. Regularization of some form is often used to counteract this. I will describe an approach to regularization, based on a Bayesian formulation of the problem, which leads to a notion of well-posedness for inverse problems, at the level of probability measures.

The stability which results from this well-posedness may be used as the basis for understanding approximation of inverse problems in finite dimensional spaces. I will describe a theory which carries out this program.

The ideas will be illustrated with the classical inverse problem for the heat equation, and then applied to so more complicated inverse problems arising in data assimilation, such as determining the initial condition for the Navier-Stokes equation from observations.

Mon, 09 Mar 2009
15:45
Oxford-Man Institute

Random walks on random graphs and trees

Dr David Croydon
(University of Warwick)
Abstract
I will discuss scaling properties of simple random walks on various random graphs, including those generated by random walk paths, branching processes and branching random walk, and briefly describe how attempting to understand the random walk on a critical percolation cluster provides some motivation for this work.

Mon, 03 Nov 2008
15:45
Oxford-Man Institute

Phase diagram for a stochastic reaction diffusion equation.

Dr. Roger Tribe
(University of Warwick)
Abstract

The system

u_t = Delta u + buv - cu + u^{1/2} dW

v_t = - uv

models the evolution of a branching population and its usage of a non-renewable resource.

A phase diagram in the parameters (b,c) describes its long time evolution.

We describe this, including some results on asymptotics in the phase diagram for small and large values of the parameters.

Mon, 22 Oct 2007
14:15
Oxford-Man Institute

Slow energy dissipation in anharmonic chains

Dr. Martin Hairer
(University of Warwick)
Abstract

We study the dynamic of a very simple chain of three anharmonic oscillators with linear nearest-neighbour couplings. The first and the last oscillator furthermore interact with heat baths through friction and noise terms. If all oscillators in such a system are coupled to heat baths, it is well-known that under relatively weak coercivity assumptions, the system has a spectral gap (even compact resolvent) and returns to equilibrium exponentially fast. It turns out that while it is still possible to show the existence and uniqueness of an invariant measure for our system, it returns to equilibrium much slower than one would at first expect. In particular, it no longer has compact resolvent when the potential of the oscillators is quartic and the spectral gap is destroyed when it grows even faster.

Mon, 11 Jun 2007
14:15
DH 3rd floor SR

Monte Carlo Markoc Chain Methods in Infinite Dimensions

Professor Andrew Stuart
(University of Warwick)
Abstract

 

A wide variety of problems arising in applications require the sampling of a

probability measure on the space of functions. Examples from econometrics,

signal processing, molecular dynamics and data assimilation will be given.

In this situation it is of interest to understand the computational

complexity of MCMC methods for sampling the desired probability measure. We

overview recent results of this type, highlighting the importance of measures

which are absolutely continuous with respect to a Guassian measure.

 

Subscribe to University of Warwick