Propagation of chaos for stochastic particle systems with Holder continuous interaction kernels
Spectral Gap for the Stochastic Quantisation Equation on the 2-dimensional Torus
A statistical framework for rough paths and some challenges
COUPLED BULK-SURFACE PDEs ARISING FROM A MATHEMATICAL MODEL OF RECEPTOR LIGAND DYNAMICS
Ricci Flow as a mollifier
Abstract
A familiar technique in PDE theory is to use mollification to adjust a function controlled in some weak norm into a smooth function with corresponding control on its $C^k$ norm. It would be extremely useful to be able to do the same sort of regularisation for Riemannian metrics, and one might hope to use Ricci flow to do this. However, attempting to do so throws up some fundamental problems concerning the well-posedness of Ricci flow. I will explain some recent developments that allow us to use Ricci flow in this way in certain important cases. In particular, the Ricci flow will now allow us to adjust a `noncollapsed’ 3-manifold with a lower bound on its Ricci curvature through a family of such manifolds, without disturbing the Riemannian distance function too much, and so that we instantly obtain uniform bounds on the full curvature tensor and all its derivatives. These ideas lead to the resolution of some long-standing open problems in geometry.
No previous knowledge of Ricci flow will be assumed, and differential geometry prerequisites will be kept to a minimum.
Joint work with Miles Simon.
Inverting the signature of a path
Abstract
We give an explicit scheme to reconstruct any C^1 curve from its signature. It is implementable and comes with detailed stability properties. The key of the inversion scheme is the use of a symmetrisation procedure that separates the behaviour of the path at small and large scales. Joint work with Terry Lyons.
Probabilistic Numerical Computation: A New Concept?
Abstract
Ambitious mathematical models of highly complex natural phenomena are challenging to analyse, and more and more computationally expensive to evaluate. This is a particularly acute problem for many tasks of interest and numerical methods will tend to be slow, due to the complexity of the models, and potentially lead to sub-optimal solutions with high levels of uncertainty which needs to be accounted for and subsequently propagated in the statistical reasoning process. This talk will introduce our contributions to an emerging area of research defining a nexus of applied mathematics, statistical science and computer science, called "probabilistic numerics". The aim is to consider numerical problems from a statistical viewpoint, and as such provide numerical methods for which numerical error can be quantified and controlled in a probabilistic manner. This philosophy will be illustrated on problems ranging from predictive policing via crime modelling to computer vision, where probabilistic numerical methods provide a rich and essential quantification of the uncertainty associated with such models and their computation.