Tue, 06 May 2025
16:00
L6

Random matrix insights into discrete moments

Christopher Hughes
(University of York)
Abstract

One curious little fact about the Riemann zeta function is that if you evaluate its derivatives at the zeros of zeta, then on average this is real and positive (even though the function is complex). This has been proven for some time now, but the aim of this talk is to generalise the question further (higher derivatives, complex moments) and gain insight using random matrix theory. The takeaway message will be that there are a multitude of different proof techniques in RMT, each with their own advantages

Mon, 17 Feb 2025
15:30
L3

Stochastic wave equations with constraints: well-posedness and Smoluchowski-Kramers diffusion approximation

Prof Zdzislaw Brzezniak
(University of York)
Abstract

I will discuss  the well-posedness of a class of stochastic second-order in time-damped evolution equations in Hilbert spaces, subject to the constraint that the solution lies on  the unit sphere. A specific example is provided by  the stochastic damped wave equation in a bounded domain of a $d$-dimensional Euclidean space, endowed with the Dirichlet boundary conditions, with the added constraint that the $L^2$-norm of the solution is equal to one. We introduce a small mass $\mu>0$ in front of the second-order derivative in time and examine the validity of the Smoluchowski-Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which  in fact does not account for the Stratonovich-to-It\^{o} correction term. This talk is based on joint research with S. Cerrai (Maryland), hopefully to be published in Comm Maths Phys.

Thu, 06 Feb 2025
16:00
L5

First-best implementation in dynamic adverse selection models with news

Jacco Thijssen
(University of York)
Abstract

This paper shows that a simple sale contract with a collection of options implements the full-information first-best allocation in a variety of continuous-time dynamic adverse selection settings with news. Our model includes as special cases most models in the literature. The implementation result holds regardless of whether news is public (i.e., contractible) or privately observed by the buyer, and it does not require deep pockets on either side of the market. It is an implication of our implementation result that, irrespective of the assumptions on the game played, no agent waits for news to trade in such models. The options here do not play a hedging role and are, thus, not priced using a no-arbitrage argument. Rather, they are priced using a game-theoretic approach.

Fri, 14 Mar 2025

12:00 - 13:00
Quillen Room

Weakly right coherent monoids

Levent Dasar
(University of York)
Abstract

A monoid S is said to be weakly right coherent if every finitely generated right ideal of S is finitely presented as a right S-act. It is known that S is weakly right coherent if and only if it satisfies the following conditions: S is right ideal Howson, meaning that the intersection of any two finitely generated right ideals of S is finitely generated; and the right annihilator congruences r(a)={(u,v) in S x S | au=av} for each a in S are finitely generated as right congruences.

This talk will introduce basic semigroup theoretic concepts as is necessary before briefly surveying some important coherency-related results. Closure properties of the classes of monoids satisfying each of the above properties will be shared, with details explored for a specific construction. Time permitting, connections with axiomatisation will be discussed.

This talk will in part be based on a paper written with coauthors Craig Miller and Victoria Gould, preprint available at: arXiv:2411.03947.

Fri, 21 Feb 2025

13:00 - 14:00
Quillen Room

Hilbert’s Fourteenth problem and the finite generation ideal of Daigle and Freudenberg’s counterexample

Simon Hart
(University of York)
Abstract

Hilbert’s fourteenth problem is concerned with whether invariant rings under algebraic group actions are finitely generated. A number of examples have been constructed since the mid-20th century which demonstrate that this is not always the case. However such examples by their nature are difficult to construct, and we know little about their underlying structure. This talk aims to provide an introduction to the topic of Hilbert’s fourteenth problem, as well as the finite generation ideal - a key tool used to further understand these counterexamples. We focus particularly on the example constructed by Daigle and Freudenberg at the turn of the 21st century, and describe the work undertaken to compute the finite generation ideal of this example. 

Mon, 10 Jun 2024
16:00
L2

Duffin-Schaeffer meets Littlewood - a talk on metric Diophantine approximation

Manuel Hauke
(University of York)
Abstract

Khintchine's Theorem is one of the cornerstones in metric Diophantine approximation. The question of removing the monotonicity condition on the approximation function in Khintchine's Theorem led to the recently proved Duffin-Schaeffer conjecture. Gallagher showed an analogue of Khintchine's Theorem for multiplicative Diophantine approximation, again assuming monotonicity. In this talk, I will discuss my joint work with L. Frühwirth about a Duffin-Schaeffer version for Gallagher's Theorem. Furthermore, I will give a broader overview on various questions in metric Diophantine approximation and demonstrate the deep connection to both analytic and combinatorial number theory that is hidden inside the proof of these statements.

Tue, 30 Jan 2024

16:00 - 17:00
L6

Characteristic polynomials, the Hybrid model, and the Ratios Conjecture

Andrew Pearce-Crump
(University of York)
Abstract

In the 1960s Shanks conjectured that the  ζ'(ρ), where ρ is a non-trivial zero of zeta, is both real and positive in the mean. Conjecturing and proving this result has a rich history, but efforts to generalise it to higher moments have so far failed. Building on the work of Keating and Snaith using characteristic polynomials from Random Matrix Theory, the Hybrid model of Gonek, Hughes and Keating, and the Ratios Conjecture of Conrey, Farmer, and Zirnbauer, we have been able to produce new conjectures for the full asymptotics of higher moments of the derivatives of zeta. This is joint work with Chris Hughes.

Tue, 01 Jun 2021
14:15
Virtual

p-Kazhdan—Lusztig theory for Hecke algebras of complex reflection groups

Chris Bowman
(University of York)
Abstract

Riche—Williamson recently proved that the characters of tilting modules for GL_h are given by non-singular p-Kazhdan—Lusztig polynomials providing p>h.  This is equivalent to calculating the decomposition numbers for symmetric groups labelled by partitions with at most h columns.  We discuss how this result can be generalised to all cyclotomic quiver Hecke algebras via a new and explicit isomorphism between (truncations of) quiver Hecke algebras and Elias–Williamson’s diagrammatic endomorphism algebras of Bott–Samelson bimodules. 

This allows us to give an elementary and explicit proof of the main theorem of Riche–Williamson’s recent monograph and extend their categorical equivalence to all cyclotomic quiver Hecke algebras, thus solving Libedinsky–Plaza’s categorical blob conjecture.  Furthermore, it allows us to classify and construct the homogeneous simple modules of quiver Hecke algebras via BGG resolutions.   
 
This is joint work with A. Cox, A. Hazi, D.Michailidis, E. Norton, and J. Simental.  
 

Tue, 15 Jun 2021

15:30 - 16:30
Virtual

Are random matrix models useful in biological systems?

Jon Pitchford
(University of York)
Abstract

For five decades, mathematicians have exploited the beauties of random matrix theory (RMT) in the hope of discovering principles which govern complex ecosystems. While RMT lies at the heart of the ideas, their translation toward biological reality requires some heavy lifting: dynamical systems theory, statistics, and large-scale computations are involved, and any predictions should be challenged with empirical data. This can become very awkward.

In addition to a morose journey through some of my personal failures to make RMT meet reality, I will try to sketch out some more constructive future perspectives. In particular, new methods for microbial community composition, dynamics and evolution might allow us to apply RMT ideas to the treatment of cystic fibrosis. In addition, in fisheries I will argue that sometimes the very absence of an empirical dataset can add to the practical value of models as tools to influence policy.

 

Tue, 24 Nov 2020
12:00
Virtual

Symmetries and Master Ward Identity in perturbative Algebraic QFT

Kasia Reijzner
(University of York)
Abstract

In this talk I will explain how theories with local symmetries are treated in perturbative Algebraic Quantum Field Theory (pAQFT). The main mathematical tool used here is the Batalin Vilkovisky (BV) formalism. I will show how the perturbative Master Ward Identity can be applied in this formalism to make sense of the renormalised Quantum Master Equation. I will also comment on perspectives for a non-perturbative formulation.

 

Subscribe to University of York