The singularity category of C^*(BG)
Abstract
For an ordinary commutative Noetherian ring R we would define the singularity category to be the quotient of the (derived category of) finitely generated modules modulo the (derived category of) fg projective modules [``the bounded derived category modulo compact objects’’]. For a ring spectrum like C^*(BG) (coefficients in a field of characteristic p) it is easy to define the module category and the compact objects, but finitely generated objects need a new definition. The talk will describe the definition and show that the singularity category is trivial exactly when G is p-nilpotent. We will go on to describe the singularity category for groups with cyclic Sylow p-subgroup.
10:00
Rigidity of curve graphs and Ivanov's Metaconjecture
Abstract
Since its introduction in 1978 the curve complex has become one of the most important objects to study surfaces and their homeomorphisms. The curve complex is defined only using data about curves and their disjointness: a stunning feature of it is the fact that this information is enough to give it a rigid structure, that is every symplicial automorphism is induced topologically. Ivanov conjectured that this rigidity is a feature of most objects naturally associated to surfaces, if their structure is rich enough.
During the talk we will introduce the curve complex, then we will focus on its rigidity, giving a sketch of the topological constructions behind the proof. At last we will talk about generalisations of the curve complex, and highlight some rigidity results which are clues that Ivanov's Metaconjecture, even if it is more of a philosophical statement than a mathematical one, could be "true".
Scaling limits and surface tension for gradient Gibbs measure
Abstract
I will discuss new results for the gradient field models with uniformly convex potential (also known as the Ginzburg-Landau field). A connection between the scaling limits of the field and elliptic homogenization was introduced by Naddaf and Spencer in 1997. We quantify the existing central limit theorems in light of recent advances in quantitative homogenization; and positively settle a conjecture of Funaki and Spohn about the surface tension. Joint work with Scott Armstrong.
Derivative formulae and estimates for diffusion processes and semigroups
Abstract
There is a routine for obtaining formulae for derivatives of smooth heat semigroups,and for certain heat semigroups acting on differential forms etc, established some time ago by myself, LeJan, & XueMei Li. Following a description of this in its general form, I will discuss its applicability in some sub-Riemannian situations and to higher order derivatives.
Hopf Algebras in Regularity Structures.
Abstract
The Regularity Structures introduced by Martin Hairer allow us to describe the solution of a singular SPDEs by a Taylor expansion with new monomials. We present the two Hopf Algebras used in this theory for defining the structure group and the renormalisation group. We will point out the importance of recursive formulae with twisted antipodes.
16:00
Descent of a sum of Consecutive Cubes ... Twice!!
Abstract
Given an integer $d$ such that $2 \leq d \leq 50$, we want to
answer the question: When is the sum of
$d$ consecutive cubes a perfect power? In other words, we want to find all
integer solutions to the equation
$(x+1)^3 + (x+2)^3 + \cdots + (x+d)^3 = y^p$. In this talk, we present some
of the techniques used to tackle such diophantine problems.
Homogenization for families of skew products
Abstract
We consider families of fast-slow skew product maps of the form \begin{align*}x_{n+1} = x_n+\eps^2 a_\eps(x_n,y_n)+\eps b_\eps(x_n)v_\eps(y_n), \quad
y_{n+1} = T_\eps y_n, \end{align*} where $T_\eps$ is a family of nonuniformly expanding maps, $v_\eps$ is of mean zero and the slow variables $x_n$ lie in $\R^d$. Under an exactness assumption on $b_\eps$ (automatically satisfied in the cases $d=1$ and $b_\eps\equiv I_d$), we prove convergence of the slow variables to a limiting stochastic differential equation (SDE) as $\eps\to0$. Our results include cases where the family of fast dynamical systems
$T_\eps$ consists of intermittent maps, unimodal maps (along the Collet-Eckmann parameters) and Viana maps.Similar results are obtained also for continuous time systems \begin{align*} \dot x = \eps^2 a_\eps(x,y,\eps)+\eps b_\eps(x)v_\eps(y), \quad \dot y = g_\eps(y). \end{align*}
Here, as in classical Wong-Zakai approximation, the limiting SDE is of Stratonovich type $dX=\bar a(X)\,dt+b_0(X)\circ\,dW$ where $\bar a$ is the average of $a_0$
and $W$ is a $d$-dimensional Brownian motion.