16:00
16:00
16:00
What is the Value of Manuscript Sources and Resources?
Abstract
Part of the series 'What do historians of mathematics do?'
" Over the last four centuries a huge amount of mathematics has been published. Most of it has, however, had little or no influence. By way of contrast, some mathematics, although unpublished in its time, has had great influence. My hope is to illustrate this with discussion of manuscript sources and resources that have survived from Thomas Harriot (c.1560--1621), Isaac Newton (1642--1727) and Évariste Galois (1811--1832)."
16:30
Torelli and Borel-Tits theorems via trichotomy
Abstract
Using the "trichotomy principle" by Boris Zilber I will give model theoretic proofs of appropriate versions of Torelli theorem and Borel-Tits theorem. The first one has interesting applications to anabelian geometry, I won't assume any prior knowledge in model theory.
16:30
Congruence and non-congruence level structures on elliptic curves: a hands-on tour of the modular tower
Abstract
16:30
Partition regularity of $x+y=z^2$ over $\mathbb{Z}/p\mathbb{Z}$
Abstract
Consider the following question. Given a $k$-colouring of the positive integers, must there exist a solution to $x+y=z^2$ with $x,y,z$ all the same colour (and not all equal to 2)? Using $10$ colours a counterexample can be given to show that the answer is "no". If one instead asks the same question over $\mathbb{Z}/p\mathbb{Z}$ for some prime $p$, the answer turns out to be "yes", provided $p$ is large enough in terms of the number of colours used. I will talk about how to prove this using techniques developed by Ben Green and Tom Sanders. The main ingredients are a regularity lemma, a counting lemma and a Ramsey lemma.
16:30
16:30
Linear (in)equalities in primes
Abstract
Many theorems and conjectures in prime number theory are equivalent to finding solutions to certain linear equations in primes -- witness Goldbach's conjecture, the twin prime conjecture, Vinogradov's theorem, finding k-term arithmetic progressions, etcetera. Classically these problems were attacked using Fourier analysis -- the 'circle' method -- which yielded some success, provided that the number of variables was sufficiently large. More recently, a long research programme of Ben Green and Terence Tao introduced two deep and wide-ranging techniques -- so-called 'higher order Fourier analysis' and the 'transference principle' -- which reduces the number of required variables dramatically. In particular, these methods give an asymptotic formula for the number of k-term arithmetic progressions of primes up to X. In this talk we will give a brief survey of these techniques, and describe new work of the speaker, partially ongoing, which applies the Green-Tao machinery to count prime solutions to certain linear inequalities in primes -- a 'higher order Davenport-Heilbronn method'.
16:30
Iterating the algebraic étale-Brauer obstruction
Abstract
A question by Poonen asks whether iterating the étale-Brauer set can give a finer obstruction set. We tackle the algebraic version of Poonen's question and give, in many cases, a negative answer.
Alison Etheridge - Modelling genes: the backwards and forwards of mathematical population genetics
Abstract
How can we explain the patterns of genetic variation in the world around us? The genetic composition of a population can be changed by natural selection, mutation, mating, and other genetic, ecological and evolutionary mechanisms. How do they interact with one another, and what was their relative importance in shaping the patterns we see today?
Whereas the pioneers of the field could only observe genetic variation indirectly, by looking at traits of individuals in a population, researchers today have direct access to DNA sequences. But making sense of this wealth of data presents a major scientific challenge and mathematical models play a decisive role. This lecture will distil our understanding into workable models and explore the remarkable power of simple mathematical caricatures in interrogating modern genetic data.
To book please email @email
16:00