Thu, 14 Jun 2018

16:00 - 17:00
L6

O-minimality and Cox rings over number fields for Manin’s conjecture

Ulrich Derenthal
(Leibniz Universität Hannover)
Abstract

Manin’s conjecture predicts the asymptotic behavior of the number of rational points of bounded height on Fano varieties over number fields. We prove this conjecture for a family of nonsplit singular quartic del Pezzo surfaces over arbitrary number fields. For the proof, we parameterize the rational points on such a del Pezzo surface by integral points on a nonuniversal torsor (which is determined explicitly using a Cox ring of a certain type), and we count them using a result of Barroero-Widmer on lattice points in o-minimal structures. This is joint work in progress with Marta Pieropan.

Mon, 15 May 2017

16:00 - 17:00
L4

Weak-Strong Uniqueness in Fluid Dynamic

Emil Wiedemann
(Leibniz Universität Hannover)
Abstract

Various concepts of weak solution have been suggested for the fundamental equations of fluid dynamics over the last few decades. However, such weak solutions may be non-unique, or at least their uniqueness is unknown. Nevertheless, a conditional notion of uniqueness, the so-called weak-strong uniqueness, can be established in various situations. We present some recent results, both positive and negative, on weak-strong uniqueness in the realm of incompressible and compressible fluid dynamics. Applications to the convergence of numerical schemes will be indicated.

Thu, 05 Mar 2015
16:00
L4

Measures of Systemic Risk

Stefan Weber
(Leibniz Universität Hannover)
Abstract
Systemic risk refers to the risk that the financial system is susceptible to failures due to the characteristics of the system itself. The tremendous cost of this type of risk requires the design and implementation of tools for the efficient macroprudential regulation of financial institutions. We propose a novel approach to measuring systemic risk.

Key to our construction is a rigorous derivation of systemic risk measures from the structure of the underlying system and the objectives of a financial regulator. The suggested systemic risk measures express systemic risk in terms of capital endowments of the financial firms. Their definition requires two ingredients: first, a random field that assigns to the capital allocations of the entities in the system a relevant stochastic outcome. The second ingredient is an acceptability criterion, i.e. a set of random variables that identifies those outcomes that are acceptable from the point of view of a regulatory authority. Systemic risk is measured by the set of allocations of additional capital that lead to acceptable outcomes. The resulting systemic risk measures are set-valued and can be studied using methods from set-valued convex analysis. At the same time, they can easily be applied to the regulation of financial institutions in practice.
 
We explain the conceptual framework and the definition of systemic risk measures, provide an algorithm for their computation, and illustrate their application in numerical case studies. We apply our methodology to systemic risk aggregation as described in Chen, Iyengar & Moallemi (2013) and to network models as suggested in the seminal paper of Eisenberg & Noe (2001), see also Cifuentes, Shin & Ferrucci (2005), Rogers & Veraart (2013), and Awiszus & Weber (2015). This is joint work with Zachary G. Feinstein and Birgit Rudloff
Subscribe to Leibniz Universität Hannover