Mon, 03 Feb 2025
16:30
L4

Shock Reflection and other 2D Riemann Problems in Gas Dynamics

Alexander Cliffe
(Università degli Studi di Padova)
Abstract

The Riemann problem is an IVP having simple piecewise constant initial data that is invariant under scaling. In 1D, the problem was originally considered by Riemann during the 19th century in the context of gas dynamics, and the general theory was more or less completed by Lax and Glimm in the mid-20th century. In 2D and MD, the situation is much more complicated, and very few analytic results are available. We discuss a shock reflection problem for the Euler equations for potential flow, with initial data that generates four interacting shockwaves. After reformulating the problem as a free boundary problem for a nonlinear PDE of mixed hyperbolic-elliptic type, the problem is solved via a sophisticated iteration procedure. The talk is based on joint work with G-Q Chen (Oxford) et. al. arXiv:2305.15224, to appear in JEMS (2025).

Wed, 02 Mar 2022

10:00 - 12:00
Virtual

Controllability of smooth and non smooth vector fields

Franco Rampazzo
(Università degli Studi di Padova)
Further Information

Dates and Times (GMT):

10am – 12pm Monday’s 2nd, 9th, 16th, 23rd March

8am – 10am Friday’s 4th, 11th, 18th, 25th March

Course Length: 16 hrs total (8 x 2 hrs)

Click here to enroll

Abstract

Courserequirements: Basicmathematicalanalysis.

Examination and grading: The exam will consist in the presentation of some previously as- signed article or book chapter (of course the student must show a good knowledge of those issues taught during the course which are connected with the presentation.).

SSD: MAT/05 Mathematical Analysis
Aim: to make students aware of smooth and non-smooth controllability results and of some

applications in various fields of Mathematics and of technology as well.

Course contents:

Vector fields are basic ingredients in many classical issues of Mathematical Analysis and its applications, including Dynamical Systems, Control Theory, and PDE’s. Loosely speaking, controllability is the study of the points that can be reached from a given initial point through concatenations of trajectories of vector fields belonging to a given family. Classical results will be stated and proved, using coordinates but also underlying possible chart-independent interpretation. We will also discuss the non smooth case, including some issues which involve Lie brackets of nonsmooth vector vector fields, a subject of relatively recent interest.

Bibliography: Lecture notes written by the teacher.

Wed, 25 May 2016
16:00
L6

A counterexample concerning regularity properties for systems of conservation laws

Laura Caravenna
(Università degli Studi di Padova)
Abstract
In 1973 D. G. Schaeffer established an interesting regularity result that applies to scalar conservation laws with uniformly convex fluxes. Loosely speaking, it can be formulated as follows: for a generic smooth initial datum, the admissible solution is smooth outside a locally finite number of curves in the time-space plane. Here the term ``generic`` should be interpreted in a suitable technical sense, related to the Baire Category Theorem. Several author improved later his result, also for numerical purposes, while only C. M. Dafermos and X. Cheng extended it in 1991 to a special 2x2 system with coinciding shock and rarefaction curves and which satisfies an assumption that reframes what in the scalar case is the assumption of uniformly convex flux, called `genuine nonlinearity'. My talk will aim at discussing a recent explicit counterexample that shows that for systems of at least three equations, even when the flux satisfies the assumption of genuinely nonlinearity, Schaeffer`s Theorem does not extend because countably many shocks might develop from a ``big`` family of smooth initial data. I will then mention related works in progress.
Subscribe to Università degli Studi di Padova