Thu, 04 Jun 2020

16:45 - 17:30
Virtual

Cuntz semigroups

Hannes Thiel
(University of Münster)
Further Information

Part of the UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The Cuntz semigroup is a geometric refinement of K-theory that plays an important role in the structure theory of C*-algebras. It is defined analogously to the Murray-von Neumann semigroup by using equivalence classes of positive elements instead of projections.
Starting with the definition of the Cuntz semigroup of a C*-algebra, we will look at some of its classical applications. I will then talk about the recent breakthroughs in the structure theory of Cuntz semigroups and some of the consequences.

Mon, 17 Feb 2020

15:45 - 16:45
L3

The optimal matching problem

MARTIN HUESMANN
(University of Münster)
Abstract

The optimal matching problem is about the rate of convergence
in Wasserstein distance of the empirical measure of iid uniform points
to the Lebesgue measure. We will start by reviewing the macroscopic
behaviour of the matching problem and will then report on recent results
on the mesoscopic behaviour in the thermodynamic regime. These results
rely on a quantitative large-scale linearization of the Monge-Ampere
equation through the Poisson equation. This is based on joint work with
Michael Goldman and Felix Otto.
 

Thu, 23 Nov 2017

14:00 - 15:00
L4

(Discrete) spline interpolation on Riemannian manifolds

Professor Benedikt Wirth
(University of Münster)
Abstract

Spline curves represent a simple and efficient tool for data interpolation in Euclidean space. During the past decades, however, more and more applications have emerged that require interpolation in (often high-dimensional) nonlinear spaces such as Riemannian manifolds. An example is the generation of motion sequences in computer graphics, where the animated figure represents a curve in a Riemannian space of shapes. Two particularly useful spline interpolation methods derive from a variational principle: linear splines minimize the average squared velocity and cubic splines minimize the average squared acceleration among all interpolating curves. Those variational principles and their discrete analogues can be used to define continuous and discretized spline curves on (possibly infinite-dimensional) Riemannian manifolds. However, it turns out that well-posedness of cubic splines is much more intricate on nonlinear and high-dimensional spaces and requires quite strong conditions on the underlying manifold. We will analyse and discuss linear and cubic splines as well as their discrete counterparts on Riemannian manifolds and show a few applications.

Subscribe to University of Münster