Thu, 17 Jun 2021

13:00 - 14:00
Virtual

Modulation of synchronization in neural networks by a slowly varying ionic current

Sue Ann Campbell
(University of Waterloo)
Further Information

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah.

Abstract

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah

Thu, 18 Jun 2020

16:45 - 17:30
Virtual

The algebraic structure of C*-algebras associated to groups

Matthew Kennedy
(University of Waterloo)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Since the work of von Neumann, the theory of operator algebras has been closely linked to the theory of groups. On the one hand, operator algebras constructed from groups provide an important source of examples and insight. On the other hand, many problems about groups are most naturally studied within an operator-algebraic framework. In this talk I will give an overview of some problems relating the structure of a group to the structure of a corresponding C*-algebra. I will discuss recent results and some possible future directions.

Tue, 13 Feb 2018

16:00 - 17:00
L5

Isotrivial Mordell-Lang and finite automata

Rahim Moosa
(University of Waterloo)
Abstract

About fifteen years ago, Thomas Scanlon and I gave a description of sets that arise as the intersection of a subvariety with a finitely generated subgroup inside a semiabelian variety over a finite field. Inspired by later work of Derksen on the positive characteristic Skolem-Mahler-Lech theorem, which turns out to be a special case, Jason Bell and I have recently recast those results in terms of finite automata. I will report on this work, as well as on the work-in-progress it has engendered, also with Bell, on an effective version of the isotrivial Mordell-Lang theorem.

Tue, 07 Nov 2017
14:30
L6

On Reed's Conjecture

Luke Postle
(University of Waterloo)
Abstract

Reed conjectured in 1998 that the chromatic number of a graph should be at most the average of the clique number (a trivial lower bound) and maximum degree plus one (a trivial upper bound); in support of this conjecture, Reed proved that the chromatic number is at most some nontrivial convex combination of these two quantities.  King and Reed later showed that a fraction of roughly 1/130000 away from the upper bound holds. Motivated by a paper by Bruhn and Joos, last year Bonamy, Perrett, and I proved that for large enough maximum degree, a fraction of 1/26 away from the upper bound holds. Then using new techniques, Delcourt and I showed that the list-coloring version holds; moreover, we improved the fraction for ordinary coloring to 1/13. Most recently, Kelly and I proved that a 'local' list version holds with a fraction of 1/52 wherein the degrees, list sizes, and clique sizes of vertices are allowed to vary.
 

Subscribe to University of Waterloo