Morse inequalities for the Koszul complex of multi-persistence
Abstract
In this talk, I'll present inequalities bounding the number of critical cells in a filtered cell complex on the one hand, and the entries of the Betti tables of the multi-parameter persistence modules of such filtrations on the other hand. Using the Mayer-Vietoris spectral sequence we first obtain strong and weak Morse inequalities involving the above quantities, and then we improve the weak inequalities achieving a sharp lower bound for the number of critical cells. Furthermore, we prove a sharp upper bound for the minimal number of critical cells, expressed again in terms of the entries of Betti tables. This is joint work with Andrea Guidolin (KTH, Stockholm). The full paper is posted online as arxiv:2108.11427.
Why should one care about metrics on (multi) persistent modules?
Abstract
What do we use metrics on persistent modules for? Is it only to asure stability of some constructions?
In my talk I will describe why I care about such metrics, show how to construct a rich space of them and illustrate how to use
them for analysis.
Modeling shapes and fields: a sheaf theoretic perspective
Abstract
We will consider modeling shapes and fields via topological and lifted-topological transforms.
Specifically, we show how the Euler Characteristic Transform and the Lifted Euler Characteristic Transform can be used in practice for statistical analysis of shape and field data. The Lifted Euler Characteristic is an alternative to the. Euler calculus developed by Ghrist and Baryshnikov for real valued functions. We also state a moduli space of shapes for which we can provide a complexity metric for the shapes. We also provide a sheaf theoretic construction of shape space that does not require diffeomorphisms or correspondence. A direct result of this sheaf theoretic construction is that in three dimensions for meshes, 0-dimensional homology is enough to characterize the shape.
Combinatorial Laplacians in data analysis: applications in genomics
Pablo G. Cámara is an Assistant Professor of Genetics at the University of Pennsylvania and a faculty member of the Penn Institute for Biomedical Informatics. He received a Ph.D. in Theoretical Physics in 2006 from Universidad Autónoma de Madrid. He performed research in string theory for several years, with postdoctoral appointments at Ecole Polytechnique, the European Organization for Nuclear Research (CERN), and University of Barcelona. Fascinated by the extremely interesting and fundamental open questions in biology, in 2014 he shifted his research focus into problems in quantitative biology, and joined the groups of Dr. Rabadan, at Columbia University, and Dr. Levine, at the Institute for Advanced Study (Princeton). Building upon techniques from applied topology and statistics, he has devised novel approaches to the inference of ancestral recombination, human recombination mapping, the study of cancer heterogeneity, and the analysis of single-cell RNA-sequencing data from dynamic and heterogeneous cellular populations.
Abstract
One of the prevailing paradigms in data analysis involves comparing groups of samples to statistically infer features that discriminate them. However, many modern applications do not fit well into this paradigm because samples cannot be naturally arranged into discrete groups. In such instances, graph techniques can be used to rank features according to their degree of consistency with an underlying metric structure without the need to cluster the samples. Here, we extend graph methods for feature selection to abstract simplicial complexes and present a general framework for clustering-independent analysis. Combinatorial Laplacian scores take into account the topology spanned by the data and reduce to the ordinary Laplacian score when restricted to graphs. We show the utility of this framework with several applications to the analysis of gene expression and multi-modal cancer data. Our results provide a unifying perspective on topological data analysis and manifold learning approaches to the analysis of point clouds.
Exemplars of Sheaf Theory in TDA
Abstract
In this talk I will present four case studies of sheaves and cosheaves in topological data analysis. The first two are examples of (co)sheaves in the small:
(1) level set persistence---and its efficacious computation via discrete Morse theory---and,
(2) decorated merge trees and Reeb graphs---enriched topological invariants that have enhanced classification power over traditional TDA methods. The second set of examples are focused on (co)sheaves in the large:
(3) understanding the space of merge trees as a stratified map to the space of barcodes and
(4) the development of a new "sheaf of sheaves" that organizes the persistent homology transform over different shapes.
Topological and geometric analysis of graphs - Yusu Wang
Abstract
In recent years, topological and geometric data analysis (TGDA) has emerged as a new and promising field for processing, analyzing and understanding complex data. Indeed, geometry and topology form natural platforms for data analysis, with geometry describing the ''shape'' behind data; and topology characterizing / summarizing both the domain where data are sampled from, as well as functions and maps associated with them. In this talk, I will show how topological (and geometric ideas) can be used to analyze graph data, which occurs ubiquitously across science and engineering. Graphs could be geometric in nature, such as road networks in GIS, or relational and abstract. I will particularly focus on the reconstruction of hidden geometric graphs from noisy data, as well as graph matching and classification. I will discuss the motivating applications, algorithm development, and theoretical guarantees for these methods. Through these topics, I aim to illustrate the important role that topological and geometric ideas can play in data analysis.
The applications and algorithms of correspondence modules - Haibin Hang
Abstract
In this work we systematically introduce relations to topological data analysis (TDA) in the categories of sets, simplicial complexes and vector spaces to characterize and study the general dynamical behaviors in a consistent way. The proposed framework not only offers new insights to the classical TDA methodologies, but also motivates new approaches to interesting applications of TDA in dynamical metric spaces, dynamical coverings, etc. The associated algorithm which produces barcode invariants, and relations in more general categories will also be discussed.