Tue, 26 Mar 2024
16:00
Quillen Room

Global Galois representations with prescribed local monodromy

Lambert A'Campo
(MPIM Bonn)
Abstract

The compatibility of local and global Langlands correspondences is a central problem in algebraic number theory. A possible approach to resolving it relies on the existence of global Galois representations with prescribed local monodromy.  I will provide a partial solution by relating the question to its topological analogue. Both the topological and arithmetic version can be solved using the same family of projective hypersurfaces, which was first studied by Dwork.

Thu, 07 Mar 2024
16:00
Lecture Room 4

Unitary Friedberg–Jacquet periods and anticyclotomic p-adic L-functions

Andrew Graham
(MPIM Bonn)
Abstract
I will describe the construction of a “square root” anticyclotomic p-adic L-function for symplectic type automorphic representations of the unitary group U(1, 2n-1). This can be seen as a higher dimensional generalisation of the work of Bertolini–Darmon–Prasanna, and one of the main ingredients is the p-adic iteration of Maass–Shimura operators in higher degrees of coherent cohomology. If time permits, I will describe the expected relation with Euler systems outside the region of interpolation.
Tue, 06 Jun 2023

11:00 - 12:00
L4

Renormalization of perturbative quantum gravity

David Prinz
(MPIM Bonn)
Abstract

General Relativity and Quantum Theory are the two main achievements of physics in the 20th century. Even though they have greatly enlarged the physical understanding of our universe, there are still situations which are completely inaccessible to us, most notably the Big Bang and the inside of black holes: These circumstances require a theory of Quantum Gravity — the unification of General Relativity with Quantum Theory. The most natural approach for that would be the application of the astonishingly successful methods of perturbative Quantum Field Theory to the graviton field, defined as the deviation of the metric with respect to a fixed background metric. Unfortunately, this approach seemed impossible due to the non-renormalizable nature of General Relativity. In this talk, I aim to give a pedagogical introduction to this topic, in particular to the Lagrange density, the Feynman graph expansion and the renormalization problem of their associated Feynman integrals. Finally, I will explain how this renormalization problem could be overcome by an infinite tower of gravitational Ward identities, as was established in my dissertation and the articles it is based upon, cf. arXiv:2210.17510 [hep-th].

Subscribe to MPIM Bonn