Mon, 24 Feb 2025
14:15
L5

Tame fundamental groups of rigid spaces

Piotr Achinger
(Institute of Mathematics - Polish Academy of Sciences)
Abstract

The fundamental group of a complex variety is finitely presented. The talk will survey algebraic variants (in fact, distant corollaries) of this fact, in the context of variants of the etale fundamental group. We will then zoom in on "tame" etale fundamental groups of p-adic analytic spaces. Our main result is that it is (topologically) finitely generated (for a quasi-compact and quasi-separated rigid space over an algebraically closed field).  The proof uses logarithmic geometry beyond its usual scope of finitely generated monoids to (eventually) reduce the problem to the more classical one of finite generation of tame fundamental groups of algebraic varieties over the residue field. This is joint work with Katharina Hübner, Marcin Lara, and Jakob Stix.

Tue, 25 Oct 2022
14:00
L6

Sums of squares in group algebras and vanishing of cohomology

Piotr Nowak
(Institute of Mathematics - Polish Academy of Sciences)
Abstract

I will discuss algebraic conditions that for a given group guarantee or characterize the vanishing of cohomology in a given degree with coefficients in any unitary representation. These conditions will be expressed in terms positivity of certain elements over group algebras, where positivity is meant as being a sum of hermitian squares. I will explain how conditions like this can be used to give computer-assisted proofs of vanishing of cohomology. 

Thu, 15 Nov 2018

12:00 - 13:00
L4

Biot-Savart law for irregular vorticity measures and Kaden's approximations

Tomasz Cieslak
(Institute of Mathematics - Polish Academy of Sciences)
Abstract

I will prove the 2d Biot-Savart law for the vorticity being an unbounded measure $\mu$, i.e. such that $\mu(\mathbb{R}^2)=\infty$, and show how can one infer some useful information concerning Kaden's spirals using it. Vorticities being unbounded measures appear naturally in the engineering literature as self-similar approximations of 2d Euler flows, see for instance Kaden's or Prandtl's spirals. Mathematicians are interested in such objects since they seem to be related to the questions of well-posedness of Delort's solutions of the 2d vortex sheet problem for the Euler equation. My talk is based on a common paper with K.Oleszkiewicz, M. Preisner and M. Szumanska.

Subscribe to Institute of Mathematics - Polish Academy of Sciences