Thu, 06 May 2021

14:00 - 15:00
Virtual

Constructor Theory

Maria Violaris
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Tue, 04 May 2021

12:45 - 13:30

Computing the Index of Saddle Points without Second Derivatives

Ambrose Yim
(Mathematical Institute (University of Oxford))
Abstract

The index of a saddle point of a smooth function is the number of descending directions of the saddle. While the index can usually be retrieved by counting the number of negative eigenvalues of the Hessian at the critical point, we may not have the luxury of having second derivatives in data deriving from practical applications. To address this problem, we develop a computational pipeline for estimating the index of a non-degenerate saddle point without explicitly computing the Hessian. In our framework, we only require a sufficiently dense sample of level sets of the function near the saddle point. Using techniques in Morse theory and Topological Data Analysis, we show how the shape of saddle points can help us infer the index of the saddle. Furthermore, we derive an explicit upper bound on the density of point samples necessary for inferring the index depending on the curvature of level sets. 

Fri, 18 Jun 2021

13:00 - 13:30
Virtual

Homogenisation to Link Scales in Tendon Tissue Engineering

Amy Kent
(Mathematical Institute (University of Oxford))
Abstract

Tendon tissue engineering aims to grow functional tissue in the lab. Tissue is grown inside a bioreactor which controls both the mechanical and biochemical environment. As tendon cells alter their behaviour in response to mechanical stresses, designing suitable bioreactor loading regimes forms a key component in ensuring healthy tissue growth.  

Linking the forces imposed by the bioreactor to the shear stress experienced by individual cell is achieved by homogenisation using multiscale asymptotics. We will present a continuum model capturing fluid-structure interaction between the nutrient media and the fibrous scaffold where cells grow. Solutions reflecting different experimental conditions will be discussed in view of the implications for shear stress distribution experienced by cells across the bioreactor.  

Thu, 03 Jun 2021

12:00 - 13:00
Virtual

Surfactants in drop-on-demand inkjet printing (Antonopoulou). An optic ray theory for nerve durotaxis (Oliveri).

Eva Antonopoulou & Hadrien Olivieri
(Mathematical Institute (University of Oxford))
Abstract

Eva Antonopoulou

Surfactants in drop-on-demand inkjet printing

The rapid development of new applications for inkjet printing and increasing complexity of the inks has created a demand for in silico optimisation of the ink jetting performance. Surfactants are often added to aqueous inks to modify the surface tension. However, the time-scales for drop formation in inkjet printing are short compared to the time-scales of the surfactant diffusion resulting a non-uniform surfactant distribution along the interface leading to surface tension gradients. We present both experiments and numerical simulations of inkjet break-up and drop formation in the presence of surfactants investigating both the surfactant transport on the interface and the influence of Marangoni forces on break-up dynamics. The numerical simulations were conducted using a modified version of the Lagrangian finite element developed by our previous work by including the solution for the transport equation for the surfactants over the free surface. During the initial phase of a “pull-push-pull” drive waveform, surfactants are concentrated at the front of the main drop with the trailing ligament being almost surfactant free. The resulting Marangoni stresses act to delay and can even prevent the break-off of the main drop from the ligament. We also examine and present some initial results on the effects of surfactants on the shape oscillations  of the main drop. Although there is little change to the oscillation frequency, the presence of surfactants significantly increases the rate of decay due to the rigidification of the surface, by modifying the internal flow within the droplet and enhancing the viscous dissipation.

Hadrien Oliveri

An optic ray theory for nerve durotaxis

During the development of the nervous system, neurons extend bundles of axons that grow and meet other neurons to form the neuronal network. Robust guidance mechanisms are needed for these bundles to migrate and reach their functional target. Directional information depends on external cues such as chemical or mechanical gradients. Unlike chemotaxis that has been extensively studied, the role and mechanism of durotaxis, the directed response to variations in substrate rigidity, remain unclear. We model bundle migration and guidance by rigidity gradients by using the theory of morphoelastic rods. We show that at a rigidity interface, the motion of axon bundles follows a simple behavior analogous to optic ray theory and obeys Snell’s law for refraction and reflection. We use this powerful analogy to demonstrate that axons can be guided by the equivalent of optical lenses and fibers created by regions of different stiffnesses.

Tue, 18 May 2021
14:00
Virtual

Hashing embeddings of optimal dimension, with applications to linear least squares

Zhen Shao
(Mathematical Institute (University of Oxford))
Abstract

We investigate theoretical and numerical properties of sparse sketching for both dense and sparse Linear Least Squares (LLS) problems. We show that, sketching with hashing matrices --- with one nonzero entry per column and of size proportional to the rank of the data matrix --- generates a subspace embedding with high probability, provided the given data matrix has low coherence; thus optimal residual values are approximately preserved when the LLS matrix has similarly important rows. We then show that using $s-$hashing matrices, with $s>1$ nonzero entries per column, satisfy similarly good sketching properties for a larger class of low coherence data matrices. Numerically, we introduce our solver Ski-LLS for solving generic dense or sparse LLS problems. Ski-LLS builds upon the successful strategies employed in the Blendenpik and LSRN solvers, that use sketching to calculate a preconditioner before applying the iterative LLS solver LSQR. Ski-LLS significantly improves upon these sketching solvers by judiciously using sparse hashing sketching while also allowing rank-deficiency of input; furthermore, when the data matrix is sparse, Ski-LLS also applies a sparse factorization to the sketched input. Extensive numerical experiments show Ski-LLS is also competitive with other state-of-the-art direct and preconditioned iterative solvers for sparse LLS, and outperforms them in the significantly over-determined regime.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 04 May 2021
14:00
Virtual

Fast randomized linear solver

Yuji Nakatsukasa
(Mathematical Institute (University of Oxford))
Abstract

We propose a randomized algorithm for solving a linear system $Ax = b$ with a highly numerically rank-deficient coefficient matrix $A$ with nearly consistent right-hand side possessing a small-norm solution. Our algorithm finds a small-norm solution with small residual in $O(N_r + nrlogn + r^3 )$ operations, where $r$ is the numerical rank of $A$ and $N_r$ is the cost of multiplying an $n\times r$ matrix to $A$. 

Joint work with Marcus Webb (Manchester). 

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 01 Jun 2021
14:30
Virtual

Order-preserving mixed-precision Runge-Kutta methods

Matteo Croci
(Mathematical Institute (University of Oxford))
Abstract

Mixed-precision algorithms combine low- and high-precision computations in order to benefit from the performance gains of reduced-precision while retaining good accuracy. In this talk we focus on explicit stabilised Runge-Kutta (ESRK) methods for parabolic PDEs as they are especially amenable to a mixed-precision treatment. However, some of the concepts we present can be extended more generally to Runge-Kutta (RK) methods in general.

Consider the problem $y' = f(t,y)$ and let $u$ be the roundoff unit of the low-precision used. Standard mixed-precision schemes perform all evaluations of $f$ in reduced-precision to improve efficiency. We show that while this approach has many benefits, it harms the convergence order of the method leading to a limiting accuracy of $O(u)$.

In this talk we present a more accurate alternative: a scheme, which we call $q$-order-preserving, that is unaffected by this limiting behaviour. The idea is simple: by using $q$ high-precision evaluations of $f$ we can hope to retain a limiting convergence order of $O(\Delta t^{q})$. However, the practical design of these order-preserving schemes is less straight-forward.

We specifically focus on ESRK schemes as these are low-order schemes that employ a much larger number of stages than dictated by their convergence order so as to maximise stability. As such, these methods require most of the computational effort to be spent for stability rather than for accuracy purposes. We present new $s$-stage order $1$ and $2$ RK-Chebyshev and RK-Legendre methods that are provably full-order preserving. These methods are essentially as cheap as their fully low-precision equivalent and they are as accurate and (almost) as stable as their high-precision counterpart.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 26 Jan 2021
16:00
Virtual

Symbol Alphabets from Plabic Graphs

Anders Schreiber
(Mathematical Institute (University of Oxford))
Abstract

Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this talk we suggest an algorithm for computing these symbol alphabets from plabic graphs by solving matrix equations of the form C.Z = 0 to associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. For m=4 and n=8 we show that this association precisely reproduces the 18 algebraic symbol letters of the two-loop NMHV eight-point amplitude from four plabic graphs. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).

Thu, 11 Mar 2021

14:00 - 15:00
Virtual

Loop Quantum Gravity

Andrea Boido
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers for access to meeting (Carmen Jorge-Diaz, Connor Behan or Sujay Nair)

Subscribe to Mathematical Institute (University of Oxford)