Thu, 14 Mar 2024
16:00
L5

Free Interface Problems and Stabilizing Effects of Transversal Magnetic Fields

Professor Zhouping Xin
(The Chinese University of Hong Kong)
Abstract

Dynamical interface motions are important flow patterns and fundamental free boundary problems in fluid mechanics, and have attracted huge attention in the mathematical community. Such waves for purely inviscid fluids are subject to various instabilities such as Kelvin-Helmholtz and Rayleigh-Taylor instabilities unless other stabilizing effects such as surface tension, Taylor-sign conditions or dissipations are imposed. However, in the presence of magnetic fields, it has been known that tangential magnetic fields may have stabilizing effects for free surface waves such as plasma-vacuum or plasma-plasma interfaces (at least locally in time), yet whether transversal magnetic fields (which occurs often for interfacial waves for astrophysical plasmas) can stabilize typical free interfacial waves remain to be some open problems. In this talk, I will show the stabilizing effects of the transversal magnetic fields for some interfacial waves for both compressible and incompressible multi-dimensional magnetohydrodynamics (MHD).

First, I will present the local (in time) well-posedness in Sobolev space of multi- dimensional compressible MHD contact discontinuities, which are the most typical interfacial waves for astrophysical plasma and prototypical fundamental waves for systems of hyperbolic conservations. Such waves are characteristic discontinuities for which there is no flow across the discontinuity surface while the magnetic field crosses transversally, which leads to a two-phase free boundary problem that may have nonlinear Rayleigh- Taylor instability and whose front symbols have no ellipticity. We overcome such difficulties by exploiting full the transversality of the magnetic fields and designing a nonlinear approximate problem, which yields the local well-posed without loss of derivatives and without any other conditions such as Rayleigh-Taylor sign conditions or surface tension. Second, I will discuss some results on the global well-posedness of free interface problems for the incompressible inviscid resistive MHD with transversal magnetic fields. Both plasma-vacuum and plasma-plasma interfaces are studied. The global in time well-posedness of both interface problems in a horizontally periodic slab impressed by a uniform non-horizontal magnetic field near an equilibrium are established, which reveals the strong stabilizing effect of the transversal field as the global well- posedness of the free boundary incompressible Euler equations (without the irrotational assumptions) around an equilibrium is unknown. This talk is based on joint work with Professor Yanjin Wang. 

Thu, 05 Nov 2020
12:00
Virtual

A bi-fidelity method for multi-scale kinetic models with uncertain parameters

Prof. Liu Liu
(The Chinese University of Hong Kong)
Abstract

Solving kinetic or related models with high-dimensional random parameters has been a challenging problem. In this talk, we will discuss how to employ the bi-fidelity stochastic collocation and choose efficient low-fidelity models in order to solve a class of multi-scale kinetic equations with uncertainties, including the Boltzmann equation, linear transport and the Vlasov-Poisson equation. In addition, some error analysis for the bi-fidelity method based on these PDEs will be presented. Finally, several numerical examples are shown to validate the efficiency and accuracy of the proposed method.

Mon, 06 May 2019
15:45
L6

Holomorphic curves and Seiberg-Witten invariants for 4-dimensional cobordisms

Yi-Jen Lee
(The Chinese University of Hong Kong)
Abstract

We will discuss a variant of Taubes’s Seiberg-Witten to Gromov theorem in the context of a 4-manifold with cylindrical ends, equipped with a nontrivial harmonic 2-form. This harmonic 2-form is allowed to be asymptotic to 0 on some (but not all) of its ends, and may have nondegenerate zeros along 1-submanifolds. Corollaries include various positivity results; some simple special cases of these constitute a key ingredient in Kutluhan-Lee-Taubes’s proof of HM = HF (Monopole Floer homology equals Heegaard Floer homology). The aforementioned general theorem is motivated by (potential) extensions of the HM = HF and Lee-Taubes’s HM = PFH (Periodic Floer homology) theorems.

Subscribe to The Chinese University of Hong Kong