Mon, 12 May 2025
16:00
L6

The moduli space of Bohr sets in R^n

Yaël Dillies
(Stockholm University)
Abstract

The arithmetic regularity lemma says that any dense set A in F_p^n can be cut along cosets of some small codimension subspace H <= F_p^n such that on almost all cosets of H, A is either random or structured (in a precise quantitative manner). A standard example shows that one cannot hope to improve "almost all" to "all", nor to have a good quantitative dependency between the constants involved. Adding a further combinatorial assumption on A to the arithmetic regularity lemma makes its conclusion so strong that one can essentially classify such sets A. In this talk, I will use use the analogous problem with F_p^n replaced with R^n as a way the motivate the funny title.

Mon, 28 Oct 2024
15:30
L5

Poincaré duality fibrations and Kontsevich's Lie graph complex

Alexander Berglund
(Stockholm University)
Abstract

I will talk about certain higher algebraic structure, governed by Kontsevich's Lie graph complex, that can be associated to an oriented fibration with Poincaré duality fiber. We construct a generalized fiber integration map associated to each Lie graph homology class and the main result is that this gives a faithful representation of graph homology. I will discuss how this leads to new possible interpretations of Lie graph homology classes as obstructions to, on one hand, smoothness of Poincaré duality fibrations, and, on the other hand, the existence of Poincaré duality algebra resolutions of the cochains of the total space as a dg module over the cochains of the base space.

Thu, 12 Oct 2023
16:00
L5

Moments of families of quadratic L-functions over function fields via homotopy theory

Dan Petersen
(Stockholm University)
Abstract

This is a report of joint work with Bergström-Diaconu-Westerland and Miller-Patzt-Randal-Williams. Based on random matrix theory, Conrey-Farmer-Keating-Rubinstein-Snaith have conjectured precise asymptotics for moments of families of quadratic L-functions over number fields. There is an extremely similar function field analogue, worked out by Andrade-Keating. I will explain that one can relate this problem to understanding the homology of the braid group with symplectic coefficients. With Bergström-Diaconu-Westerland we compute the stable homology groups of the braid groups with these coefficients, together with their structure as Galois representations. We moreover show that the answer matches the number-theoretic predictions. With Miller-Patzt-Randal-Williams we prove an improved range for homological stability with these coefficients. Together, these results imply the conjectured asymptotics for all moments in the function field case, for all sufficiently large (but fixed) q.

Thu, 28 Nov 2019
16:00
L6

Propagating algebraicity of automorphic representations via functoriality

Wushi Goldring
(Stockholm University)
Abstract

My talk will have two protagonists: (1) Automorphic representations which -- let's be honest -- are very complicated and mysterious, but also (2) Involutions  (=automorphisms of order at most 2) of connected reductive groups -- these are very concrete and can often be represented by diagonal matrices with entries 1,-1 or i, -i. The goal is to explain how difficult questions about (1) can be reduced to relatively easy, concrete questions about (2).
Automorphic representations are representation-theoretic generalizations of modular forms. Like modular forms, automorphic representations are initially defined analytically. But unlike modular forms -- where we have a reinterpretation in terms of algebraic geometry -- for most automorphic representations we currently only have a (real) analytic definition. The Langlands Program predicts that a wide class of automorphic representations admit the same algebraic properties which have been known to hold for modular forms since the 1960's and 70's. In particular, certain complex numbers "Hecke eigenvalues" attached to these automorphic representations are conjectured to be algebraic numbers. This remains open in many cases (especially those cases of interest in number theory and algebraic geometry), in particular for Maass forms -- functions on the upper half-plane which are a non-holomorphic variant of modular forms.
I will explain how elementary structure theory of reductive groups over the complex numbers provides new insight into the above algebraicity conjectures; in particular we deduce that the Hecke eigenvalues are algebraic for an infinite class of examples where this was not previously known. 
After applying a bunch of "big, old theorems" (in particular Langlands' own archimedean correspondence), it all comes down to studying how involutions of a connected, reductive group vary under group homomorphisms. Here I will write down the key examples explicitly using matrices.

Subscribe to Stockholm University