Mon, 24 Jan 2022

14:00 - 15:00
Virtual

Exploiting low dimensional data structures in volumetric X-ray imaging

Thomas Blumensath
(University of Southampton)
Abstract

Volumetric X-ray tomography is used in many areas, including applications in medical imaging, many fields of scientific investigation as well as several industrial settings. Yet complex X-ray physics and the significant size of individual x-ray tomography data-sets poses a range of data-science challenges from the development of efficient computational methods, the modelling of complex non-linear relationships, the effective analysis of large volumetric images as well as the inversion of several ill conditioned inverse problems, all of which prevent the application of these techniques in many advanced imaging settings of interest. This talk will highlight several applications were specific data-science issues arise and showcase a range of approaches developed recently at the University of Southampton to overcome many of these obstacles.

Tue, 08 Feb 2022

15:30 - 16:30
Virtual

Non-intersecting Brownian motion and compact Lie groups

Alex Little
(University of Bristol)
Abstract

In many contexts a correspondence has been found between the classical compact groups and certain boundary conditions -- $U(n)$ corresponding to periodic, $USp(2n)$ corresponding to Dirichlet, $SO(2n)$ corresponding to Neumann and $SO(2n+1)$ corresponding to Zaremba. In this talk, I will try to elucidate this correspondence in Lie theoretic terms and in the process relate random matrix theory to Yang-Mills theory, free fermions and modular forms.

Thu, 27 Jan 2022

15:00 - 16:00
Virtual

Ricci curvature lower bounds for metric measure spaces.

Dimitri Navarro
(Oxford University)
Abstract

In the '80s, Gromov proved that sequences of Riemannian manifold with a lower bound on the Ricci curvature and an upper bound on the dimension are precompact in the measured Gromov--Hausdorff topology (mGH for short). Since then, much attention has been given to the limits of such sequences, called Ricci limit spaces. A way to study these limits is to introduce a synthetic definition of Ricci curvature lower bounds and dimension upper bounds. A synthetic definition should not rely on an underlying smooth structure and should be stable when passing to the limit in the mGH topology. In this talk, I will briefly introduce CD spaces, which are a generalization of Ricci limit spaces.

Mon, 17 Jan 2022
12:45
Virtual

Symmetry TFTs from String Theory

Federico Bonetti
(University of Oxford)
Abstract

The global symmetries of a d-dimensional quantum field theory (QFT), and their ’t Hooft anomalies, are conveniently captured by a topological field theory (TFT) in (d+1) dimensions, which we may refer to as the Symmetry TFT of the given d-dimensional QFT. This point of view has a vast range of applicability: it encompasses both ordinary symmetries, as well as generalized symmetries. In this talk, I will discuss systematic methods to compute the Symmetry TFT for QFTs realized by M-theory on a singular, non-compact space X. The desired Symmetry TFT is extracted from the topological couplings of 11d supergravity, via reduction on the space L, the boundary of X. The formalism of differential cohomology allows us to include discrete symmetries originating from torsion in the cohomology of L. I will illustrate this framework in two classes of examples: M-theory on an ALE space (engineering 7d SYM theory); M-theory on Calabi-Yau cones (engineering 5d superconformal field theories).

Thu, 27 Jan 2022

16:00 - 17:00
Virtual

Learning Homogenized PDEs in Continuum Mechanics

Andrew Stuart
(Caltech)
Further Information
Abstract

Neural networks have shown great success at learning function approximators between spaces X and Y, in the setting where X is a finite dimensional Euclidean space and where Y is either a finite dimensional Euclidean space (regression) or a set of finite cardinality (classification); the neural networks learn the approximator from N data pairs {x_n, y_n}. In many problems arising in the physical and engineering sciences it is desirable to generalize this setting to learn operators between spaces of functions X and Y. The talk will overview recent work in this context.

Then the talk will focus on work aimed at addressing the problem of learning operators which define the constitutive model characterizing the macroscopic behaviour of multiscale materials arising in material modeling. Mathematically this corresponds to using machine learning to determine appropriate homogenized equations, using data generated at the microscopic scale. Applications to visco-elasticity and crystal-plasticity are given.

Fri, 04 Feb 2022

14:00 - 15:00
Virtual

Representations of GL_2 and p-adic Symmetric Spaces

James Taylor
(University of Oxford)
Abstract

Let $F$ be a finite field or a $p$-adic field. One method of constructing irreducible representations of $G = GL_2(F)$ is to consider spaces on which $G$ naturally acts and look at the representations arising from invariants of these spaces, such as the action of $G$ on cohomology groups. In this talk, I will discuss how this goes for abstract representations of $G$ (when $F$ is finite), and smooth representations of $G$ (when $F$ is $p$-adic). The first space is an affine algebraic variety, and the second a tower of rigid spaces. I will then mention some recent results about how this tower allows us to construct new interesting $p$-adic representations of $G$, before explaining how trying to adapt these methods leads naturally to considerations about certain geometric properties of these spaces.

Tue, 15 Feb 2022

15:30 - 16:30
Virtual

A handful of moment computations of characteristic polynomials and their derivatives in the classical compact ensembles

Emilia Alvarez
(University of Bristol)
Abstract

I will present a collection of moment computations over the unitary, symplectic and special orthogonal matrix ensembles that I've done throughout my thesis. I will focus on the methods used, the motivation from number theory, the relationship to Painlev\'e equations, and directions for future work.

Tue, 25 Jan 2022

15:30 - 16:30
Virtual

Gaussian Multiplicative Chaos for Gaussian Orthogonal and Symplectic Ensembles

Pax Kivimae
(Northwestern University)
Abstract

In recent years, our understanding of the asymptotic behavior of characteristic polynomials of random matrices has seen much progression. A key paradigm in this area is that the asymptotic behavior is often captured by an appropriate family of Gaussian multiplicative chaos (GMC) measures (defined heuristically as the normalized exponential of log-correlated random fields). Indeed, such results have been shown for Harr distributed matrices for U(N), O(N), and Sp(2N), as well as for one-cut Hermitian invariant ensembles (and in particular, GUE(N)). In this talk we explain an extension of these results to GOE(2N) and GSE(N). The key tool is a new asymptotic relation between the moments of the characteristic polynomials of all three classical ensembles. 

Tue, 18 Jan 2022

15:30 - 16:30
Virtual

Quantum chaos and integrable structures in quantum resonant systems

Marine De Clerck
(Vrije Universiteit Brussel)
Abstract

I will present a study of integrable structures and quantum chaos in a class of infinite-dimensional though computationally tractable models, called quantum resonant systems. These models, together with their classical counterparts, emerge in various areas of physics, such as nonlinear dynamics in anti-de Sitter spacetime, but also in Bose-Einstein condensate physics. The class of classical models displays a wide range of integrable properties, such as the existence of Lax pairs, partial solvability or generic chaotic dynamics. This opens a window to investigate these properties from the perspective of the corresponding quantum theory by effectively diagonalising finite-sized matrices and exploring level spacing statistics. We will furthermore analyse the implications of the symmetries for the spectrum of resonant models with partial solvability and discuss how the rich integrable structures can be exploited to constructed novel quantum coherent states that effectively capture sophisticated nonlinear solutions in the classical theory.

Fri, 21 Jan 2022

14:00 - 15:00
Virtual

JART virtual social

Further Information

We'll gather virtually, to catch up and socialise after the holidays.

Subscribe to Virtual