Wed, 13 May 2020
10:00
Virtual

A Mapping Class Group Presentation from Fatgraphs

Adele Jackson
(University of Oxford)
Abstract

The mapping class group of a surface with boundary acts freely and properly discontinuously on the fatgraph complex, which is a contractible cell complex arising from a cell decomposition of Teichmuller space. We will use this action to get a presentation of the mapping class group in terms of fat graphs, and convert this into one in terms of chord diagrams. This chord slide presentation has potential applications to computing bordered Heegaard Floer invariants for open books with disconnected binding.

Wed, 06 May 2020
10:00
Virtual

Revisiting Leighton's Theorem

Daniel Woodhouse
(University of Oxford)
Abstract

Let X_1 and X_2 be finite graphs with isomorphic universal covers.

Leighton's graph covering theorem states that X_1 and X_2 have a common finite cover.

I will discuss recent work generalizing this theorem and how myself and Sam Shepherd have been applying it to rigidity questions in geometric group theory.

Mon, 04 May 2020
12:45
Virtual

Superstrings, Calabi-Yau Manifolds and Machine-Learning -- ZOOM SEMINAR

Yang-Hui He
(City University)
Abstract

We review how historically the problem of string phenomenology lead theoretical physics first to algebraic/diffenretial geometry, and then to computational geometry, and now to data science and AI.
With the concrete playground of the Calabi-Yau landscape, accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades, we show how the latest techniques in machine-learning can help explore problems of physical and mathematical interest.
 

Fri, 22 May 2020

10:00 - 11:00
Virtual

The mathematics of beam-forming optimisation with antenna arrays in 5G communication systems

Keith Briggs
(BT)
Further Information

A discussion session will follow the workshop and those interested are invited to stay in the meeting for the discussions.

Abstract

Modern cellular radio systems such as 4G and 5G use antennas with multiple elements, a technique known as MIMO, and the intention is to increase the capacity of the radio channel.  5G allows even more possibilities, such as massive MIMO, where there can be hundreds of elements in the transmit antenna, and beam-forming (or beam-steering), where the phase of the signals fed to the antenna elements is adjusted to focus the signal energy in the direction of the receivers.  However, this technology poses some difficult optimization problems, and here mathematicians can contribute.   In this talk I will explain the background, and then look at questions such as: what is an appropriate objective function?; what constraints are there?; are any problems of this type convex (or quasi-convex, or difference-of-convex)?; and, can big problems of this type be solved in real time?

Mon, 11 May 2020

16:00 - 17:00
Virtual

Lie brackets for non-smooth vector fields

Franco Rampazzo
(University of Padova)
Abstract

For a given vector field $h$ on a manifold $M$ and an initial point $x \in M$, let $t \mapsto \exp th(x)$ denote the solution to the Cauchy problem $y' = h(y)$, $y(0) = x$. Given two vector fields $f$, $g$, the flows $\exp(tf)$, $\exp(tg)$ in general are not commutative. That is, it may happen that, for some initial point $x$,

$$\exp(-tg) \circ \exp(-tf) \circ \exp(tg) \circ \exp(tf) (x) ≠ x,$$

for small times $t ≠ 0$.

         As is well-known, the Lie bracket $[f,g] := Dg \cdot f - Df \cdot g$ measures the local non-commutativity of the flows. Indeed, one has (on any coordinate chart)

$$\exp(-tg) \circ \exp(-tf) \circ \exp(tg) \circ \exp(tf) (x) - x = t^2 [f,g](x) + o(t^2)$$

         The non-commutativity of vector fields lies at the basis of many nonlinear issues, like propagation of maxima for solutions of degenerate elliptic PDEs, controllability sufficient conditions in Nonlinear Control Theory, and higher order necessary conditions for optimal controls. The fundamental results concerning commutativity (e.g. Rashevski-Chow's Theorem, also known as Hörmander's full rank condition, or Frobenius Theorem) assume that the vector fields are smooth enough for the involved iterated Lie brackets to be well defined and continuous: for instance, if the bracket $[f,[g,h]]$ is to be used, one posits $g,h \in C^2$ and $f \in C^{1..}$.

         We propose a notion of (set-valued) Lie bracket (see [1]-[3]), through which we are able to extend some of the mentioned fundamental results to families of vector fields whose iterated brackets are just measurable and defined almost everywhere.

 

References.

[1]  Rampazzo, F. and Sussmann, H., Set-valued differentials and a nonsmooth version of Chow’s Theorem (2001), Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, 2001 (IEEE Publications, New York), pp. 2613-2618.

[2] Rampazzo F.  and Sussmann, H.J., Commutators of flow maps of nonsmooth vector fields (2007), Journal of Differential Equations, 232, pp. 134-175.

[3] Feleqi, E. and Rampazzo, F., Iterated Lie brackets for nonsmooth vector fields (2017), Nonlinear Differential Equations and Applications NoDEA, 24-6.

 

Mon, 25 May 2020
12:45
Virtual

Symplectic duality and implosion -- ZOOM SEMINAR

Andrew Dancer
(University of Oxford)
Abstract

We discuss hyperkahler implosion spaces, their relevance to group actions and why they should fit into the symplectic duality picture. For certain groups we present candidates for the symplectic duals of the associated implosion spaces and provide computational evidence. This is joint work with Amihay Hanany and Frances Kirwan.
 

Mon, 08 Jun 2020
12:45
Virtual

Branes and the Swampland -- ZOOM SEMINAR

Hee-Cheol Kim
(POSTECH Pohang)
Abstract

I will talk about a novel idea on the Swampland program that uses consistency of what lives on the string probes in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the supergravity theories based on unitarity of the worldsheet CFT. I will show some of the theories with 8 or 16 supersymmetries, which are otherwise consistent looking, belong to the Swampland.

Mon, 11 May 2020
15:45
Virtual

Torus knots in contact topology

Irena Matkovic
(Oxford)
Abstract

Tight contact structures on knot complements arise both from Legendrian realizations of the knot in the standard tight contact structure and from the non-loose Legendrian realizations in the overtwisted structures on the sphere. In this talk, we will deal with negative torus knots. We wish to concentrate on the relations between these various Legendrian realizations of a knot and the contact structures on the surgeries along the knot. In particular, we will build every contact structure by a single Legendrian surgery, and relate the knot properties to the properties of surgeries; namely, tightness, fillability and non-vanishing Heegaard Floer invariant.

Thu, 07 May 2020
16:00
Virtual

Variational principles for fluid dynamics on rough paths

James Michael Leahy
(Imperial College)
Further Information
Abstract

We introduce constrained variational principles for fluid dynamics on rough paths. The advection of the fluid is constrained to be the sum of a vector field which represents coarse-scale motion and a rough (in time) vector field which parametrizes fine-scale motion. The rough vector field is regarded as fixed and the rough partial differential equation for the coarse-scale velocity is derived as a consequence of being a critical point of the action functional.

 

The action functional is perturbative in the sense that if the rough vector f ield is set to zero, then the corresponding variational principle agrees with the reduced (to the vector fields) Euler-Poincare variational principle introduced in Holm, Marsden and Ratiu (1998). More precisely, the Lagrangian in the action functional encodes the physics of the fluid and is a function of only the coarse-scale velocity. 

 

By parametrizing the fine-scales of fluid motion with a rough vector field, we preserve the pathwise nature of deterministic fluid dynamics and establish a flexible framework for stochastic parametrization schemes. The main benefit afforded by our approach is that the system of rough partial differential equations we derive satisfy essential conservation laws, including Kelvin’s circulation theorem. This talk is based on recent joint work with Dan Crisan, Darryl Holm, and Torstein Nilssen.

Mon, 01 Jun 2020
14:15
Virtual

Homological mirror symmetry for log Calabi-Yau surfaces

Ailsa Keating
(Cambridge)
Abstract

Given a log Calabi-Yau surface Y with maximal boundary D, I'll explain how to construct a mirror Landau-Ginzburg model, and sketch a proof of homological mirror symmetry for these pairs when (Y,D) is distinguished within its deformation class (this is mirror to an exact manifold). I'll explain how to relate this to the total space of the SYZ fibration predicted by Gross--Hacking--Keel, and, time permitting, explain ties with earlier work of Auroux--Katzarkov--Orlov and Abouzaid. Joint work with Paul Hacking.

Subscribe to Virtual