Numerical analysis of oscillatory solutions of compressible flows
Abstract
Speaker Prof Dr Maria Lukacova will talk about 'Numerical analysis of oscillatory solutions of compressible flows'
Oscillatory solutions of compressible flows arise in many practical situations. An iconic example is the Kelvin-Helmholtz problem, where standard numerical methods yield oscillatory solutions. In such a situation, standard tools of numerical analysis for partial differential equations are not applicable.
We will show that structure-preserving numerical methods converge in general to generalised solutions, the so-called dissipative solutions.
The latter describes the limits of oscillatory sequences. We will concentrate on the inviscid flows, the Euler equations of gas dynamics, and mention also the relevant results obtained for the viscous compressible flows, governed by the Navier-Stokes equations.
We discuss a concept of K-convergence that turns a weak convergence of numerical solutions into the strong convergence of
their empirical means to a dissipative solution. The latter satisfies a weak formulation of the Euler equations modulo the Reynolds turbulent stress. We will also discuss suitable selection criteria to recover well-posedness of the Euler equations of gas dynamics. Theoretical results will be illustrated by a series of numerical simulations.
Maxima of a random model of the Riemann zeta function on longer intervals (and branching random walks)
Abstract
We study the maximum of a random model for the Riemann zeta function (on the critical line at height T) on the interval $[-(\log T)^\theta,(\log T)^\theta)$, where $ \theta = (\log \log T)^{-a}$, with $0<a<1$. We obtain the leading order as well as the logarithmic correction of the maximum.
As it turns out a good toy model is a collection of independent BRW’s, where the number of independent copies depends on $\theta$. In this talk I will try to motivate our results by mainly focusing on this toy model. The talk is based on joint work in progress with L.-P. Arguin and G. Dubach.