Thu, 13 Jun 2024

14:00 - 15:00
Lecture Room 3

A New Two-Dimensional Model-Based Subspace Method for Large-Scale Unconstrained Derivative-Free Optimization: 2D-MoSub

Pengcheng Xie
(Chinese Academy of Sciences)
Abstract

This seminar will introduce 2D-MoSub, a derivative-free optimization method based on the subspace method and quadratic models, specifically tackling large-scale derivative-free problems. 2D-MoSub combines 2-dimensional quadratic interpolation models and trust-region techniques to update the points and explore the 2-dimensional subspace iteratively. Its framework includes constructing the interpolation set, building the quadratic interpolation model, performing trust-region trial steps, and updating the trust-region radius and subspace. Computation details and theoretical properties will be discussed. Numerical results demonstrate the advantage of 2D-MoSub.

 

Short Bio:
Pengcheng Xie, PhD (Chinese Academy of Sciences), is joining Lawrence Berkeley National Laboratory as a postdoctoral scholar specializing in mathematical optimization and numerical analysis. He has developed optimization methods, including 2D-MoSub and SUSD-TR. Pengcheng has published in major journals and presented at ISMP 2024 (upcoming), ICIAM 2023, and CSIAM 2022. He received the Hua Loo-keng scholarship in 2019 and the CAS-AMSS Presidential scholarship in 2023.
 

Wed, 20 Apr 2022

09:00 - 10:00
Virtual

Optimization, Speed-up, and Out-of-distribution Prediction in Deep Learning

Wei Chen
(Chinese Academy of Sciences)
Further Information
Abstract

In this talk, I will introduce our investigations on how to make deep learning easier to optimize, faster to train, and more robust to out-of-distribution prediction. To be specific, we design a group-invariant optimization framework for ReLU neural networks; we compensate the gradient delay in asynchronized distributed training; and we improve the out-of-distribution prediction by incorporating “causal” invariance.

Fri, 05 Mar 2021

12:00 - 13:00

Linear convergence of an alternating polar decomposition method for low rank orthogonal tensor approximations

Ke Ye
(Chinese Academy of Sciences)
Abstract

Low rank orthogonal tensor approximation (LROTA) is an important problem in tensor computations and their applications. A classical and widely used algorithm is the alternating polar decomposition method (APD). In this talk, I will first give very a brief introduction to tensors and their decompositions. After that, an improved version named iAPD of the classical APD will be proposed and all the following four fundamental properties of iAPD will be discussed : (i) the algorithm converges globally and the whole sequence converges to a KKT point without any assumption; (ii) it exhibits an overall sublinear convergence with an explicit rate which is sharper than the usual O(1/k) for first order methods in optimization; (iii) more importantly, it converges R-linearly for a generic tensor without any assumption; (iv) for almost all LROTA problems, iAPD reduces to APD after finitely many iterations if it converges to a local minimizer. If time permits, I will also present some numerical experiments.

Subscribe to Chinese Academy of Sciences