Thu, 22 Oct 2009

14:00 - 15:00
3WS SR

Mesh redistribution algorithms and error control for time-dependent PDEs

Prof. Charalambos Makridakis
(University of Crete)
Abstract

Self adjusted meshes have important benefits approximating PDEs with solutions that exhibit nontrivial characteristics. When appropriately chosen, they lead to efficient, accurate and robust algorithms. Error control is also important, since appropriate analysis can provide guarantees on how accurate the approximate solution is through a posteriori estimates. Error control may lead to appropriate adaptive algorithms by identifying areas of large errors and adjusting the mesh accordingly. Error control and associated adaptive algorithms for important equations in Mathematical Physics is an open problem.

In this talk we consider the main structure of an algorithm which permits mesh redistribution with time and the nontrivial characteristics associated with it. We present improved algorithms and we discuss successful approaches towards error control for model problems (linear and nonlinear) of parabolic or hyperbolic type.

Thu, 15 Oct 2009

14:00 - 15:00
3WS SR

Sparsity, $\ell_1$ Minimization, and the Geometric Separation Problem

Prof. Gitta Kutyniok
(University of Osnabruck)
Abstract

During the last two years, sparsity has become a key concept in various areas

of applied mathematics, computer science, and electrical engineering. Sparsity

methodologies explore the fundamental fact that many types of data/signals can

be represented by only a few non-vanishing coefficients when choosing a suitable

basis or, more generally, a frame. If signals possess such a sparse representation,

they can in general be recovered from few measurements using $\ell_1$ minimization

techniques.

One application of this novel methodology is the geometric separation of data,

which is composed of two (or more) geometrically distinct constituents -- for

instance, pointlike and curvelike structures in astronomical imaging of galaxies.

Although it seems impossible to extract those components -- as there are two

unknowns for every datum -- suggestive empirical results using sparsity

considerations have already been obtained.

In this talk we will first give an introduction into the concept of sparse

representations and sparse recovery. Then we will develop a very general

theoretical approach to the problem of geometric separation based on these

methodologies by introducing novel ideas such as geometric clustering of

coefficients. Finally, we will apply our results to the situation of separation

of pointlike and curvelike structures in astronomical imaging of galaxies,

where a deliberately overcomplete representation made of wavelets (suited

to pointlike structures) and curvelets/shearlets (suited to curvelike

structures) will be chosen. The decomposition principle is to minimize the

$\ell_1$ norm of the frame coefficients. Our theoretical results, which

are based on microlocal analysis considerations, show that at all sufficiently

fine scales, nearly-perfect separation is indeed achieved.

This is joint work with David Donoho (Stanford University).

Subscribe to 3WS SR