Fri, 11 Mar 2016

11:00 - 12:00
C1

On the birational invariance of the BCOV torsion of Calabi-Yau threefold (joint with V. Maillot)

Damian Rössler
(Oxford)
Abstract

Fang, Lu and Yoshikawa conjectured a few years ago that a certain string-theoretic invariant (originally introduced by the physicists M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa) of Calabi-Yau threefolds is a birational invariant. This conjecture can be viewed as a "secondary" analog (in dimension three) of the birational invariance of Hodge numbers of Calabi-Yau varieties established by Batyrev and Kontsevich. Using the arithmetic Riemann-Roch theorem, we prove a weak form of this conjecture. 

Fri, 04 Mar 2016

11:00 - 12:00
C1

TBA

Minhyong Kim
Fri, 26 Feb 2016

11:00 - 12:00
C1

TBA

Jennifer Balakrishnan
Fri, 19 Feb 2016

11:00 - 12:00
C1

\zeta(3) in graviton-graviton scattering and the moduli space of CY manifolds

Philip Candelas
(Oxford)
Abstract

I will discuss how \zeta(3) occurs in quantum corrections to the Einstein action, and how this causes \zeta(3) to be seen in the moduli space of CY manifolds. I will also draw attention to the fact that the dependence of the moduli space on \zeta(3) has a p-adic analogue.

Mon, 22 Feb 2016
16:30
C1

Congruence and non-congruence level structures on elliptic curves: a hands-on tour of the modular tower

Alexander Betts
(Oxford University)
Abstract
Classically, one puts an algebraic structure on certain "congruence" quotients of the upper half plane by interpreting them as spaces parametrising elliptic curves with certain level structures on their torsion subgroups. However, the non-congruence quotients don't admit such a straightforward description.
 
We will sketch the classical theory of congruence modular curves and level structures, and then discuss a preprint by W. Chen which extends the above notions to non-congruence modular curves by considering so-called Teichmueller level structures on the fundamental groups of punctured elliptic curves.
Mon, 08 Feb 2016
16:30
C1

The degree zero part of the motivic polylogarithm and the Deligne-Beilinson cohomology

Danny Scarponi
(Univ.Toulouse)
Abstract

Last year, G. Kings and D. Rossler related the degree zero part of the polylogarithm
on abelian schemes pol^0 with another object previously defined by V. Maillot and D.
Rossler. More precisely, they proved that the canonical class of currents constructed
by Maillot and Rossler provides us with the realization of pol^0 in analytic Deligne
cohomology.
I will show that, adding some properness conditions, it is possible to give a
refinement of Kings and Rossler’s result involving Deligne-Beilinson cohomology
instead of analytic Deligne cohomology.

 

Mon, 15 Feb 2016
16:30
C1

Partition regularity of $x+y=z^2$ over $\mathbb{Z}/p\mathbb{Z}$

Sofia Lindqvist
(Oxford University)
Abstract

Consider the following question. Given a $k$-colouring of the positive integers, must there exist a solution to $x+y=z^2$ with $x,y,z$ all the same colour (and not all equal to 2)? Using $10$ colours a counterexample can be given to show that the answer is "no". If one instead asks the same question over $\mathbb{Z}/p\mathbb{Z}$ for some prime $p$, the answer turns out to be "yes", provided $p$ is large enough in terms of the number of colours used.  I will talk about how to prove this using techniques developed by Ben Green and Tom Sanders. The main ingredients are a regularity lemma, a counting lemma and a Ramsey lemma.

Mon, 01 Feb 2016
16:30
C1

Linear (in)equalities in primes

Aled Walker
(Oxford University)
Abstract

Many theorems and conjectures in prime number theory are equivalent to finding solutions to certain linear equations in primes -- witness Goldbach's conjecture, the twin prime conjecture, Vinogradov's theorem, finding k-term arithmetic progressions, etcetera. Classically these problems were attacked using Fourier analysis -- the 'circle' method -- which yielded some success, provided that the number of variables was sufficiently large. More recently, a long research programme of Ben Green and Terence Tao introduced two deep and wide-ranging techniques -- so-called 'higher order Fourier analysis' and the 'transference principle' -- which reduces the number of required variables dramatically. In particular, these methods give an asymptotic formula for the number of k-term arithmetic progressions of primes up to X. In this talk we will give a brief survey of these techniques, and describe new work of the speaker, partially ongoing, which applies the Green-Tao machinery to count prime solutions to certain linear inequalities in primes -- a 'higher order Davenport-Heilbronn method'. 

Subscribe to C1