Thu, 18 Jan 2024

16:00 - 17:00
C2

Morita equivalence for operator systems

Evgenios Kakariadis
(Newcastle University)
Abstract

In ring theory, Morita equivalence is an invariant for many properties, generalising the isomorphism of commutative rings. A strong Morita equivalence for selfadjoint operator algebras was introduced by Rieffel in the 60s, and works as a correspondence between their representations. In the past 30 years, there has been an interest to develop a similar theory for nonselfadjoint operator algebras and operator spaces with much success. Taking motivation from recent work of Connes and van Suijlekom, we will present a Morita theory for operator systems. We will give equivalent characterizations of Morita equivalence via Morita contexts, bihomomoprhisms and stable isomorphisms, while we will highlight properties that are preserved in this context. Time permitted we will provide applications to rigid systems, function systems and non-commutative graphs. This is joint work with George Eleftherakis and Ivan Todorov.

Thu, 30 Nov 2023

16:00 - 17:00
C2

Noncommutative geometry meets harmonic analysis on reductive symmetric spaces

Shintaro Nishikawa
(University of Southampton)
Abstract

A homogeneous space G/H is called a reductive symmetric space if G is a (real) reductive Lie group, and H is a symmetric subgroup of G, meaning that H is the subgroup fixed by some involution on G. The representation theory on reductive symmetric spaces was studied in depth in the 1990s by Erik van den Ban, Patrick Delorme, and Henrik Schlichtkrull, among many others. In particular, they obtained the Plancherel formula for the L^2 space of G/H. An important aspect is that this generalizes the group case, obtained by Harish-Chandra, which corresponds to the case when G = G' x G' and H is the diagonal subgroup.

In our collaborative efforts with A. Afgoustidis, N. Higson, P. Hochs, Y. Song, we are studying this subject from the perspective of noncommutative geometry. I will describe this exciting new development, with a particular emphasis on describing what is new and how this is different from the traditional group case, i.e. the reduced group C*-algebra of G.

Tue, 14 Nov 2023

16:00 - 17:00
C2

Admissible KMS bundles on classifiable C$^*$-algebras

Robert Neagu
Abstract

Named after mathematical physicists Kubo, Martin, and Schwinger, KMS states are a special class of states on any C$^*$-algebra admitting a continuous action of the real numbers. Unlike in the case of von Neumann algebras, where each modular flow has a unique KMS state, the collection of KMS states for a given flow on a C$^*$-algebra can be quite intricate. In this talk, I will explain what abstract properties these simplices have and show how one can realise such a simplex on various classes of simple C$^*$-algebras.

Mon, 30 Oct 2023
16:00
C2

Hodge theory in positive characteristic

Inés Borchers Arias
(University of Oxford)
Abstract

I will introduce the Hodge-de-Rham spectral sequence and formulate an algebraic Hodge decomposition theorem. Time permitting, I will sketch Deligne and Illusie’s proof of the Hodge decomposition using positive characteristic methods.

Tue, 21 Nov 2023

16:00 - 17:00
C2

On stability of metric spaces and Kalton's property Q

Andras Zsak
(University of Cambridge)
Abstract

There has been considerable interest in the problem of whether every metric space of bounded geometry coarsely embeds into a uniformly convex Banach space due to the work of Kasparov and Yu that established a connection between such embeddings and the Novikov conjecture. Brown and Guentner were able to prove that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. Kalton significantly extended this result to stable metric spaces and asked whether these classes are coarsely equivalent, i.e. whether every reflexive Banach space coarsely embeds into a stable metric space. Baudier introduced the notion of upper stability, a relaxation of stability, for metric spaces as a new invariant to distinguish reflexive spaces from stable metric spaces. In this talk, we show that in fact, every reflexive space is upper stable and also establish a connection of upper stability to the asymptotic structure of Banach spaces. This is joint work with F. Baudier and Th. Schlumprecht.

Tue, 31 Oct 2023

16:00 - 17:00
C2

Local topological order and boundary algebras

Pieter Naaijkens
(University of Cardiff)
Abstract

The study of topologically ordered quantum phases has led to interesting connections with, for example, the study of subfactors. In this talk, I will introduce a new axiomatisation of such quantum models defined on d-dimensional square lattices in terms of nets of projections. These local topological order axioms are satisfied by known 2D models such as the toric code and Levin-Wen models built on a unitary fusion category. We show that these axioms lead to a definition of boundary algebras naturally living on a hyperplane. This boundary algebra encodes information about the excitations in the bulk theory, leading to a bulk-boundary correspondence. I will outline the main points, with an emphasis on interesting connections to operator algebras and fusion categories. Based on joint work with C. Jones, Penneys, and Wallick (arXiv:2307.12552).

Tue, 30 May 2023
12:30
C2

Compromised clearance and cognitive decline

Georgia Brennan
Abstract

We describe a network model for the progression of Alzheimer's disease based on the underlying relationship to toxic proteins. From human patient data we construct a network of a typical brain, and simulate the concentration and build-up of toxic proteins, as well as the clearance, using reaction--diffusion equations. Our results suggest clearance plays an important role in delaying the onset of Alzheimer's disease, and provide a theoretical framework for the growing body of clinical results.

Tue, 02 May 2023
12:30
C2

An Introduction to Holography

Alice Luscher
Abstract

Holography, which reveals a specific correspondence between gravitational and quantum theories, is an ongoing area of research that has known a lot of interest these past decades. The duality of holography has many applications: it provides an interpretation for black hole entropy in terms of microstates, it helps our understanding of solid state properties such as superconductivity and strongly coupled quantum systems, and it even offers insight into the mysterious realm of quantum gravity. 

In this talk, I will first introduce the concept of holography and some of its applications. I will then discuss some notions of string theory and geometry that are commonly used in holography. Finally, if time permits, I will present some of our latest results, where we match the energy of membranes in supergravity to properties of the dual quantum models.

Tue, 10 Oct 2023

16:00 - 17:00
C2

Non-commutative graphs

Matthew Daws
(University of Lancaster)
Abstract

I will discuss various definitions of quantum or noncommutative graphs that have appeared in the literature, along with motivating examples.  One definition is due to Weaver, where examples arise from quantum channels and the study of quantum zero-error communication.  This definition works for any von Neumann algebra, and is "spatial": an operator system satisfying a certain operator bimodule condition.  Another definition, first due to Musto, Reutter, and Verdon, involves a generalisation of the concept of an adjacency matrix, coming from the study of (simple, undirected) graphs.  Here we study finite-dimensional C*-algebras with a given faithful state; examples are perhaps less obvious.  I will discuss generalisations of the latter framework when the state is not tracial, and discuss various notions of a "morphism" of the resulting objects

Tue, 13 Jun 2023

15:00 - 17:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
((Oxford University))
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_2.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Subscribe to C2