Mon, 07 Mar 2022

16:00 - 17:00
C2

TBA

Benjamin Bedert
Mon, 21 Feb 2022

16:00 - 17:00
C2

TBA

Julia Stadlmann
Mon, 07 Feb 2022

16:00 - 17:00
C2

TBA

Mon, 24 Jan 2022

16:00 - 17:00
C2

TBA

Yifan Jing
Wed, 16 Feb 2022

16:00 - 17:00
C2

Free group automorphisms from a logician's point of view

Jonathan Fruchter
(University of Oxford)
Abstract

We will record some surprising and lesser-known properties of free groups, and use these to give a model theoretic analysis of free group automorphisms and orbits under Aut(F). This will result in a neat geometric description of (a logic-flavoured analogue of) algebraic closures in a free group. An almost immediate corollary will be that elementary subgroups of a free group are free factors.

I will assume no familiarity with first-order logic and model theory - the beginning of the talk will be devoted to familiarize everyone with the few required notions.

Thu, 02 Dec 2021

11:30 - 12:45
C2

Existential rank and essential dimension of definable sets

Philip Dittmann
(TU Dresden)
Abstract

Several natural measures of complexity can be attached to an
existentially definable ("diophantine") subset of a field. One of these
is the minimal number of existential quantifiers required to define it,
while others are of a more geometric nature. I shall define these
measures and discuss interesting interactions and behaviours, some of
which depend on properties of the field (e.g. imperfection and
ampleness). We shall see for instance that the set of n-tuples of field
elements consisting of n squares is usually definable with a single
quantifier, but not always. I will also discuss connections with
Hilbert's 10th Problem and a number of open questions.
This is joint work with Nicolas Daans and Arno Fehm.

Wed, 26 Jan 2022

16:00 - 17:00
C2

Moduli space approach to the conjectures of Ivanov and Putman-Wieland

Ognjen Tosic
(University of Oxford)
Abstract

A well-known conjecture of Ivanov states that mapping class groups of surfaces with genus at least 3 virtually do not surject onto the integers. Putman and Wieland reformulated this conjecture in terms of higher Prym representations of finite-index subgroups of mapping class groups. We show that the Putman-Wieland conjecture holds for geometrically uniform subgroups. Along the way we construct a cover S of the genus 2 surface such that the lifts of simple closed curves do not generate the rational homology of S. This is joint work with Markovic.

Mon, 25 Oct 2021

16:00 - 17:00
C2

Hyperelliptic continued fractions

Francesco Ballini
(Oxford)
Abstract

We can define a continued fraction for formal series $f(t)=\sum_{i=-\infty}^d c_it^i$ by repeatedly removing the polynomial part, $\sum_{i=0}^d c_it^i$, (the equivalent of the integer part) and inverting the remaining part, as in the real case. This way, the partial quotients are polynomials. Both the usual continued fractions and the polynomial continued fractions carry properties of best approximation. However, while for square roots of rationals the real continued fraction is eventually periodic, such periodicity does not always occur for $\sqrt{D(t)}$. The correct analogy was found by Abel in 1826: the continued fraction of $\sqrt{D(t)}$ is eventually periodic if and only if there exist nontrivial polynomials $x(t)$, $y(t)$ such that $x(t)^2-D(t)y(t)^2=1$ (the polynomial Pell equation). Notice that the same holds also for square root of integers in the real case. In 2014 Zannier found that some periodicity survives for all the $\sqrt{D(t)}$: the degrees of their partial quotients are eventually periodic. His proof is strongly geometric and it is based on the study of the Jacobian of the curve $u^2=D(t)$. We give a brief survey of the theory of polynomial continued fractions, Jacobians and an account of the proof of the result of Zannier.

Wed, 19 Jan 2022

16:00 - 17:00
C2

Local-to-Global rigidity of quasi-buildings

Amandine Escalier
(University of Münster)
Abstract

We say that a graph G is Local-to-Global rigid if there exists R>0 such that every other graph whose balls of radius R are isometric to the balls of radius R in G is covered by G. Examples include the Euclidean building of PSLn(Qp). We show that the rigidity of the building goes further by proving that a reconstruction is possible from only a partial local information, called “print”. We use this to prove the rigidity of graphs quasi-isometric to the building among which are the torsion-free lattices of PSLn(Qp).

Subscribe to C2