Mon, 01 May 2023
16:00
C3

Combinatorics goes perverse: An Erdős problem on additive Sidon bases

Cédric Pilatte
Abstract

In 1993, Erdős, Sárközy and Sós posed the question of whether there exists a set $S$ of positive integers that is both a Sidon set and an asymptotic basis of order $3$. This means that the sums of two elements of $S$ are all distinct, while the sums of three elements of $S$ cover all sufficiently large integers. In this talk, I will present a construction of such a set, building on ideas of Ruzsa and Cilleruelo. The proof uses a powerful number-theoretic result of Sawin, which is established using cutting-edge algebraic geometry techniques.

Mon, 24 Apr 2023
16:00
C3

The weight part of Serre's conjecture

Martin Ortiz
(UCL (LSGNT))
Abstract

Serre's conjecture (now a theorem) predicts that an irreducible 2-dimensional odd
Galois representation of $\mathbb Q$ with coefficients in $\bar{\mathbb F}_p$ comes from the mod p reduction of
a modular form. A key feature is that two modular forms of different weights can have the same
mod p reduction. Fixing a modular form $f$, the weight part of Serre's conjecture seeks to find all
the possible weights where one can find a modular form congruent to $f$ mod $p$. The recipe for these
weights was conjectured by Serre, and it depends only on the local Galois representation at $p$. I
will explain the ideas involved in Edixhoven's proof of the weight part, and if time allows, I
will briefly say something about what the generalizations beyond $\operatorname{GL}_2/\mathbb Q$ might look like. 

Tue, 13 Jun 2023
12:30
C3

Hydrocephalus shunt simulations

Lizzi Hayman
Abstract

Hydrocephalus is a serious medical condition which causes an excess of cerebrospinal fluid (CSF) to build up within the brain. A common treatment for congenital hydrocephalus is to implant a permanent drainage shunt, removing excess CSF to the stomach where it can be safely cleared. However, this treatment carries the risk of vascular brain tissues such as the Choroid Plexus (CP) being dragged into the shunt during drainage, causing it to block, and also preventing the shunt from being easily replaced. In this talk I present results from our fluid-structure interaction model which simulates the deflection of the CP during the operation of the hydrocephalus shunt. We seek to improve the shunt component by optimising the geometry with respect to CP deflection.

Tue, 13 Jun 2023

16:00 - 17:00
C3

Cohomological obstructions to lifting properties for full C*-algebras of property (T) groups

Abstract

A C*-algebra has the lifting property (LP) if any unital completely positive map into a quotient C*-algebra admits a completely positive lift. The local lifting property (LLP), introduced by Kirchberg in the early 1990s, is a weaker, local version of the LP.  I will present a method, based on non-vanishing of second cohomology groups, for proving the failure of lifting properties for full C*-algebras of countable groups with (relative) property (T). This allows us to derive that the full C*-algebras of the groups $Z^2\rtimes SL_2(Z)$ and $SL_n(Z)$, for n>2, do not have the LLP. The same method allows us to prove that the full C*-algebras of a large class of groups with property (T), including those admitting a probability measure preserving action with non-vanishing second real-valued cohomology, do not have the LP.  In a different direction, we prove that the full C*-algebras of any non-finitely presented groups with property (T) do not have the LP. Time permitting, I will also discuss a connection with the notion of Hilbert-Schmidt stability for countable groups. This is based on a joint work with Pieter Spaas and Matthew Wiersma.

Tue, 30 May 2023

16:00 - 17:00
C3

Deformation to the Normal Cone and Pseudo-Differential Calculus

Mahsa Naraghi
(University of Paris - Sorbonne)
Abstract

Lie groupoids are closely connected to pseudo-differential calculus. On a vector bundle considered as a `commutative Lie groupoid' (i.e. as a family of commutative Lie groups), they can be treated using the Fourier transform. In this talk, we explore the extension of this idea to the noncommutative space by employing the tubular neighborhood construction and subsequently adopting a global approach through the introduction of deformation to the normal cone (groupoid). By utilizing this groupoid, we can construct the analytic index of pseudo-differential operators without relying on pseudo-differential calculus.


Furthermore, through the canonical construction of the space of functions with Schwartz decay, pseudo-differential operators on a manifold can be represented as an integral associated with smooth functions on the deformation to the normal cone. This perspective provides a geometric characterization that allows for the direct proof of fundamental properties of pseudo-differential operators.

Tue, 14 Mar 2023
16:00
C3

Linking vertex algebras and Wightman QFTs

Christopher Raymond
(Australian National University)
Abstract

There has been a great deal of interest in understanding the link between the axiomatic descriptions of conformal field theory given by vertex operator algebras and conformal nets. In recent work, we establish an equivalence between certain vertex algebras and conformally-symmetric quantum field theories in the sense of Wightman. In this talk I will give an overview of these results and discuss some of the difficulties that arise, the functional analytic properties of vertex algebras, and some of the ideas for future work in this area.

This is joint work with James Tener and Yoh Tanimoto.

Tue, 07 Mar 2023
16:00
C3

Cotlar identities for groups acting on tree like structures

Runlian Xia
(University of Glasgow)
Abstract

The Hilbert transform H is a basic example of a Fourier multiplier, and Riesz proved that H is a bounded operator on Lp(T) for all p between 1 and infinity.  We study Hilbert transform type Fourier multipliers on group algebras and their boundedness on corresponding non-commutative Lp spaces. The pioneering work in this direction is due to Mei and Ricard who proved Lp-boundedness of Hilbert transforms on free group von Neumann algebras using a Cotlar identity. In this talk, we introduce a generalised Cotlar identity and a new geometric form of Hilbert transform for groups acting on tree-like structures. This class of groups includes amalgamated free products, HNN extensions, left orderable groups and many others.  This is joint work with Adrián González and Javier Parcet.

Tue, 28 Feb 2023
16:00
C3

Some algebraic aspects of minimal dynamics on the Cantor set

Maryram Hosseini
(Queen Mary, University of London)
Abstract

By Jewett-Krieger theorems minimal dynamical systems on the Cantor set are topological analogous of ergodic systems on probability Lebesgue spaces. In this analogy and to study a Cantor minimal system, indicator functions of clopen sets (as continuous integer or real valued functions) are considered while they are mod out by the subgroup of all co-boundary functions. That is how dimension group which is an operator algebraic object appears in dynamical systems. In this talk, I try to explain a bit more about dimension groups from dynamical point of view and how it relates to topological factoring and spectrum of Cantor minimal systems.

Tue, 21 Feb 2023
16:00
C3

On the joint spectral radius

Emmanuel Breuillard
(University of Oxford)
Abstract

The joint spectral radius of a finite family S of matrices measures the rate of exponential growth of the maximal norm of an element from the product set S^n as n grows. This notion was introduced by Rota and Strang in the 60s. It arises naturally in a number of contexts in pure and applied mathematics. I will discuss its basic properties and focus on a formula of Berger and Wang and results of J. Bochi that extend to several matrices the classical for formula of Gelfand that relates the growth rate of the powers of a single matrix to its spectral radius. I give new proofs and derive explicit estimates with polynomial dependence on the dimension, refining these results. If time permits I will also discuss connections with the Tits alternative, the notion of joint spectrum, and a geometric version of these results regarding groups acting on non-positively curved spaces.

Tue, 07 Feb 2023
12:30
C3

Studying occupational mobility using online resume data

Rohit Sahasrabuddhe
Abstract

Data sets of self-reported online resumes are a valuable tool to understand workers' career trajectories and how workers may adapt to the changing demands of employers. However, the sample of workers that choose to upload their resumes online may not be representative of a nation's workforce. To understand the advantages and limitations of these datasets, we analyze a data set of more than 1 Million online resumes and compare the findings with a administrative data from the Current Population Survey (CPS).
 

Subscribe to C3