Mon, 07 Mar 2016

15:45 - 16:45
C4

Superhedging Approach to Robust Finance and Local Times

David Proemel
(ETH Zurich)
Abstract

Using Vovk's game-theoretic approach to mathematical finance and probability, it is possible to obtain new results in both areas.We first prove that one can make an arbitrarily large profit by investing in those one-dimensional paths which do not possess a local time of finite p-variation.  Additionally, we provide pathwise Tanaka formulas suitable for our local times and for absolutely continuous functions with sufficient regular derivatives. In the second part we derive a model-independent super-replication theorem in continuous time. Our result covers a broad range of exotic derivatives, including look-back options, discretely monitored Asian options, and options on realized variance.
 This talk is based on joint works with M. Beiglböck, A.M.G. Cox, M. Huesmann and N. Perkowski.


 

Mon, 07 Mar 2016

14:15 - 15:15
C4

Singular SPDEs on manifolds

Joscha Diehl
(TU Berlin)
Abstract

 

We show how the theories of paracontrolled distributions and regularity structures can be implemented on manifolds, to solve singular SPDEs like the parabolic Anderson model.

This is ongoing work with Bruce Driver (UCSD) and Antoine Dahlqvist (Cambridge)

 

 

Mon, 29 Feb 2016

15:45 - 16:45
C4

Malliavin Calculus for Regularity Structures: the case of gPAM

Guiseppe Cannizzaro
(TU Berlin)
Abstract

Malliavin calculus is implemented in the context of [M. Hairer, A theory of regularity structures, Invent. Math. 2014]. This involves some constructions of independent interest, notably an extension of the structure which accommodates a robust and purely deterministic translation operator in L^2-directions between models. In the concrete context of the generalized parabolic Anderson model in 2D -one of the singular SPDEs discussed in the afore-mentioned article - we establish existence of a density at positive times.

Mon, 29 Feb 2016

14:15 - 15:15
C4

Rough Gronwall Lemma and weak solutions to RPDEs

Martina Hofmanova
(TU Berlin)
Abstract

In this talk, I will present recent results that give the necessary mathematical foundation for the study of rough path driven PDEs in the framework of weak solutions. The main tool is a new rough Gronwall Lemma argument whose application is rather wide: among others, it allows to derive the basic energy estimates leading to the proof of existence for e.g. parabolic RPDEs. The talk is based on a joint work with Aurelien Deya, Massimiliano Gubinelli and Samy Tindel.

Wed, 22 Apr 2015
14:00
C4

Understanding crack patterns: mud, lava, permafrost and crocodiles

Lucas Goehring
(Max Planck Institute)
Abstract

Contraction cracks form captivating patterns such as those seen in dried mud or the polygonal networks that cover the polar regions of Earth and Mars. These patterns can be controlled, for example in the artistic craquelure sometimes found in pottery glazes. More practically, a growing zoo of patterns, including parallel arrays of cracks, spiral cracks, wavy cracks, lenticular or en-passant cracks, etc., are known from simple experiments in thin films – essentially drying paint – and are finding application in surfaces with engineered properties. Through such work we are also learning how natural crack patterns can be interpreted, for example in the use of dried blood droplets for medical or forensic diagnosis, or to understand how scales develop on the heads of crocodiles.

I will discuss mud cracks, how they form, and their use as a simple laboratory analogue system. For flat mud layers I will show how sequential crack formation leads to a rectilinear crack network, with cracks meeting each other at roughly 90°. By allowing cracks to repeatedly form and heal, I will describe how this pattern evolves into a hexagonal pattern. This is the origin of several striking real-world systems: columnar joints in starch and lava; cracks in gypsum-cemented sand; and the polygonal terrain in permafrost. Finally, I will turn to look at crack patterns over uneven substrates, such as paint over the grain of wood, or on geophysical scales involving buried craters, and identify when crack patterns are expected to be dominated by what lies beneath them. In exploring all these different situations I will highlight the role of energy release in selecting the crack patterns that are seen.

Tue, 21 Oct 2014

12:45 - 13:45
C4

TBA

Alexander Vervuurt, Jochen Kursawe, Linus Schumacher
(Mathematical Institute, Oxford)
Tue, 17 Jun 2014

13:15 - 14:00
C4

Community structure in temporal multilayer networks

Marya Bazzi
(University of Oxford)
Abstract

Networks provide a convenient way to represent complex systems of interacting entities. Many networks contain "communities" of nodes that are more strongly connected to each other than to nodes in the rest of the network. Most methods for detecting communities are designed for static networks. However, in many applications, entities and/or interactions between entities evolve in time. To incorporate temporal variation into the detection of a network's community structure, two main approaches have been adopted. The first approach entails aggregating different snapshots of a network over time to form a static network and then using static techniques on the resulting network. The second approach entails using static techniques on a sequence of snapshots or aggregations over time, and then tracking the temporal evolution of communities across the sequence in some ad hoc manner. We represent a temporal network as a multilayer network (a sequence of coupled snapshots), and discuss  a method that can find communities that extend across time. 

Tue, 03 Jun 2014

13:00 - 14:00
C4

`When you say "Jump!"; I say "How far ?"': non-local jumping for stochastic lattice-based position jump simulations.

Paul Taylor and Mark Gilbert
(University of Oxford)
Abstract
Position jump models of diffusion are a valuable tool in biology, but stochastic simulations can be very computationally intensive, especially when the number of particles involved grows large. It will be seen that time-savings can be made by allowing particles to jump with a range of distances and rates, rather than being restricted to moving to adjacent boxes on the lattice. Since diffusive systems can often be described with a PDE in the diffusive limit when particle numbers are large, we also discuss the derivation of equivalent boundary conditions for the discrete, non-local system, as well as variations on the basic scheme such as biased jumping and hybrid systems.
Subscribe to C4