Mon, 16 Feb 2026
16:00
C5

The Taylor-Wiles patching method and beyond

Simon Alonso
(Imperial College London )
Abstract

In this talk I will give a hopefully not too technical introduction to one of the techniques that allowed Taylor and Wiles to prove the modularity theorem that was the final step for proving Fermat's Last Theorem.
After explaining how the patching works, I will present some generalisations of the method to different contexts. If time permits, I will also briefly explain how patching was used to produce a candidate for the p-adic local Langlands correspondence.

Thu, 05 Feb 2026

12:00 - 13:00
C5

Well-Posedness of Characteristic Free-Boundary Problems in Ideal Compressible MHD

Difan Yuan
(Beijing Normal University)
Abstract

We study two-dimensional characteristic free-boundary problems in ideal compressible magnetohydrodynamics. For current-vortex sheets, surface-wave effects yield derivative loss and only weak (neutral) stability; under a sufficient stability condition on the background state we obtain anisotropic weighted Sobolev energy estimates and prove local-in-time existence and nonlinear stability via a Nash-Moser scheme, confirming stabilization by strong magnetic fields against Kelvin-Helmholtz instability. For the plasma-vacuum interface, coupling hyperbolic MHD with elliptic pre-Maxwell dynamics, we establish local existence and uniqueness provided at least one magnetic field is nonzero along the initial interface.


 

Mon, 02 Feb 2026
16:00
C5

The Sárközy problem in function fields

Aleksandra Kowalska
(University of Oxford)
Abstract

In the talk, I'll first describe a more general context of Sárközy-type problems and interesting directions in which they can be pursued. Then, I'll focus on the specific case of bounding the size of sets A s. t. A - A + 1 contains no prime. After describing the progress on the problem for integers, I'll pass on to considering an analogous question for function fields and (after a general introduction to function fields) I'll speak about my recent result in this area.

Thu, 12 Mar 2026

12:00 - 13:00
C5

TBA

Lorenzo Portinale
(Università degli Studi di Milano)
Abstract

TBA

Thu, 26 Feb 2026

12:00 - 13:00
C5

Uniquess domains for bounded solutions of 2x2 hyperbolic systems

Elio Marconi
(University of Padova)
Abstract
For a genuinely nonlinear $2 \times 2$ hyperbolic system of conservation laws, assuming that the initial data have small $\bf L^\infty$ norm but possibly unbounded total variation, the existence of global solutions was proved in a classical paper by Glimm and Lax (1970). In general, the total variation of these solutions decays like $t^{-1}$. Motivated by the theory of fractional domains for linear analytic semigroups, we consider here solutions with faster decay rate: $\hbox{Tot.Var.}\bigl\{u(t,\cdot)\bigr\}\leq C t^{\alpha-1}$. For these solutions, a uniqueness theorem is proved. Indeed, as the initial data range over a domain of functions with $\|\bar u\|_{{\bf L}^\infty} \leq\varepsilon_1$ small enough, solutions with fast decay yield a Hölder continuous semigroup. The Hölder exponent can be taken arbitrarily close to 1 by further shrinking the value of $\varepsilon_1>0$. An auxiliary result identifies a class of initial data whose solutions have rapidly decaying total variation.
This is a joint work with A. Bressan and G. Vaidya.


 

Mon, 26 Jan 2026
16:00
C5

Phenomenon of l-independence

Suvir Rathore
(Cambridge University)
Abstract
Abstract: In number theory, one often studies compatible systems of l-adic representations of geometric origin where l is a prime number. The proof of the Weil conjectures (in particular the Riemann hypothesis) show the the l-adic cohomology of a variety over a finite field is independent of l in some sense.
 
After proving the Weil conjectures, Deligne offered some more general conjectures, which hint at deeper l-independence statements as predicted by Grothendieck's vision of a theory of motives. One key input in proving this conjecture is the Langland's correspondence.
 
We will introduce this phenomenon guided by the conjectural theory of motives through the lens of a universal cohomology theory, and explain how one uses the Langlands correspondence.
Thu, 29 Jan 2026

12:00 - 13:00
C5

On the exact failure of the hot spots conjecture

Dr. Mitchell Taylor
(ETH Zurich)
Abstract
The hot spots conjecture asserts that as time goes to infinity, the hottest and coldest points in an insulated domain will migrate towards the boundary of the domain. In this talk, I will describe joint work with Jaume de Dios Pont and Alex Hsu where we find the exact failure of the hot spots conjecture in every dimension. 


 

Thu, 22 Jan 2026

12:00 - 13:00
C5

On a 1D Navier–Stokes model for dynamic combustion: characterisation for the depletion of reactant and global wellposedness

Siran Li
(Shanghai Jiao Tong University)
Abstract

We consider a one-dimensional compressible Navier-Stokes model for reacting gas mixtures with the same γ-law in dynamic combustion. The unknowns of the PDE system consist of the inverse density, velocity, temperature, and mass fraction of the reactant (Z). First, we show that the graph of Z cannot form cusps or corners near the points where the reactant in the combustion process is completely depleted at any time, based on a Bernis-type inequality by M. Winkler (2012) and the recent works by T. Cieślak et al (2023). In addition, we establish the global well-posedness theory of small BV weak solutions for initial data that are small perturbations around the constant equilibrium state (1, 0, 1, 0) in the L1(R)∩BV(R)-norm, via an analysis of the Green's function of the linearised system. The large-time behaviour of the global BV weak solutions is also characterised. This is motivated by and extends the recent global well-posedness theory for BV weak solutions to the one-dimensional isentropic Navier-Stokes and Navier-Stokes-Fourier systems developed by T. Liu and S.-H. Yu (2022).

*Joint with Prof. Haitao Wang and Miss Jianing Yang (SJTU)

Mon, 19 Jan 2026
16:00
C5

The rearrangement conjecture

Alp Müyesser
(University of Oxford )
Abstract

A longstanding folklore conjecture in combinatorial number theory is the following: given an additive set $S$ not containing the identity, $S$ can be ordered as $s_1, \ldots, s_k$ so that the partial sums $s_1+\cdots+s_j$ are distinct for each $j\in[k]$. We discuss a recent resolution of this conjecture in the finite field model (where the ambient group is $\mathbb{F}_2^n$, or more generally, any bounded exponent abelian group). This is joint work with B. Bedert, M. Bucic, N. Kravitz, and R. Montgomery.

Subscribe to C5