On the exact failure of the hot spots conjecture
Abstract
We consider a one-dimensional compressible Navier-Stokes model for reacting gas mixtures with the same γ-law in dynamic combustion. The unknowns of the PDE system consist of the inverse density, velocity, temperature, and mass fraction of the reactant (Z). First, we show that the graph of Z cannot form cusps or corners near the points where the reactant in the combustion process is completely depleted at any time, based on a Bernis-type inequality by M. Winkler (2012) and the recent works by T. Cieślak et al (2023). In addition, we establish the global well-posedness theory of small BV weak solutions for initial data that are small perturbations around the constant equilibrium state (1, 0, 1, 0) in the L1(R)∩BV(R)-norm, via an analysis of the Green's function of the linearised system. The large-time behaviour of the global BV weak solutions is also characterised. This is motivated by and extends the recent global well-posedness theory for BV weak solutions to the one-dimensional isentropic Navier-Stokes and Navier-Stokes-Fourier systems developed by T. Liu and S.-H. Yu (2022).
*Joint with Prof. Haitao Wang and Miss Jianing Yang (SJTU)
A longstanding folklore conjecture in combinatorial number theory is the following: given an additive set $S$ not containing the identity, $S$ can be ordered as $s_1, \ldots, s_k$ so that the partial sums $s_1+\cdots+s_j$ are distinct for each $j\in[k]$. We discuss a recent resolution of this conjecture in the finite field model (where the ambient group is $\mathbb{F}_2^n$, or more generally, any bounded exponent abelian group). This is joint work with B. Bedert, M. Bucic, N. Kravitz, and R. Montgomery.
In this talk, I will discuss an approach to free boundary minimal surfaces which comes out of recent work by Struwe on a non-local energy, called the half-energy. I will introduce the gradient flow of this functional and its theory in the already studied case of disc type domains, covering existence, uniqueness, regularity and singularity analysis and highlighting the striking parallels with the theory of the classical harmonic map flow. Then I will go on to present new work, joint with Melanie Rupflin and Michael Struwe, which extends this theory to all compact surfaces with boundary. This relies upon combining the above ideas with those of the Teichmüller harmonic map flow introduced by Rupflin and Topping.
This talk will focus on various definitions of orientability for non-smooth spaces with Ricci curvature bounded from below. The stability of orientability and non-orientability will be discussed. As an application, we will prove the orientability of 4-manifolds with non-negative Ricci curvature and Euclidean volume growth. This work is based on a collaboration with E. Bruè and A. Pigati.
I introduce modal group theory, where one investigates the class of all groups using embeddability as a modal operator. By employing HNN extensions, I demonstrate that the modal language of groups is more expressive than the first-order language of groups. Furthermore, I establish that the theory of true arithmetic, viewed as sets of Gödel numbers, is computably isomorphic to the modal theory of finitely presented groups. Finally, I resolve an open question posed by Sören Berger, Alexander Block, and Benedikt Löwe by proving that the propositional modal validities of groups constitute precisely the modal logic S4.2.